16.設(shè)函數(shù)f(x)=2|x+a|-|x-b|,
(1)當(dāng)a=1,b=-1時(shí),求使f(x)≥2$\sqrt{2}$的x取值范圍;
(2)若f(x)≥$\frac{1}{32}$恒成立,求a-b的取值范圍.

分析 (1)直接運(yùn)用“零點(diǎn)分段法”解函數(shù)絕對值不等式;
(2)運(yùn)用絕對值三角不等式得,|x+a|-|x+b|≤|x+a-x-b|=|a-b|,再直接求出a-b的取值范圍.

解答 解:(1)由于y=2x是增函數(shù),
不等式:f(x)≥2$\sqrt{2}$等價(jià)于:|x+1|-|x-1|≥$\frac{3}{2}$,
①當(dāng)x≥1時(shí),|x+1|-|x-1|=2,不等式恒成立;
②當(dāng)-1<x<1時(shí),|x+1|-|x-1|=2x,不等式化為,2x≥$\frac{3}{2}$,即$\frac{3}{4}$≤x<1;
?③當(dāng)x≤-1時(shí),|x+1|-|x-1|=-2,無解;
綜上以上討論得,x取值范圍是[$\frac{3}{4}$,+∞);
(2)f(x)≥$\frac{1}{32}$?|x+a|-|x+b|≥-5,
由絕對值三角不等式得,
|x+a|-|x+b|≤|x+a-x-b|=|a-b|,
所以,-|a-b|≤|x+a|-|x+b|≤|a-b|,
要使原不等式恒成立只需:-|a-b|≥-5,
可得a-b的取值范圍是:[-5,5].

點(diǎn)評 本題主要考查了絕對值不等式的解法,運(yùn)用了零點(diǎn)分段法和絕對值三角不等式,體現(xiàn)了分類討論的解題思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{a}$=(sinωx,1),$\overrightarrow$=(1,cosωx),f(x)=$\overrightarrow{a}$•$\overrightarrow$的周期為π,則f(x)的一個(gè)對稱中心為( 。
A.($\frac{π}{4}$,0)B.(-$\frac{π}{4}$,0)C.($\frac{π}{8}$,0)D.(-$\frac{π}{8}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.甲、乙兩人連續(xù)6年對農(nóng)村甲魚養(yǎng)殖業(yè)(產(chǎn)量)進(jìn)行調(diào)查,提供了兩個(gè)方面的信息,甲調(diào)查表明,每個(gè)甲魚池平均出產(chǎn)量從第一年1萬只上升到第六年的2萬只.
第1年第2年第3年第4年第5年第6年
每池產(chǎn)量1萬只1.2萬只1.4萬只1.6萬只1.8萬只2萬只
乙調(diào)查表明,甲魚池的個(gè)數(shù)由第一年的30個(gè)減少到第6年的10個(gè).
第1年第2年第3年第4年第5年第6年
魚池個(gè)數(shù)30個(gè)26個(gè)22個(gè)18個(gè)14個(gè)10個(gè)
(1)求第2年全縣產(chǎn)甲魚的總數(shù);
(2)到第6年這個(gè)縣甲魚養(yǎng)殖業(yè)的規(guī)模比第1年是擴(kuò)大了還是縮小了?說明理由.
(3)求哪一年的規(guī)模最大?說明原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=$\frac{\sqrt{4-{x}^{2}}}{|2+x|-2}$是( 。
A.偶函數(shù)B.奇函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若兩個(gè)函數(shù)的圖象有一個(gè)公共點(diǎn),并在該點(diǎn)處的切線相同,就說這兩個(gè)函數(shù)有why點(diǎn).已知函數(shù)f(x)=lnx和g(x)=em•ex有why點(diǎn),則m所在的區(qū)間為( 。
A.$({-2,-\frac{3}{2}})$B.$({-\frac{3}{2},-1})$C.$({-\frac{5}{2},-2})$D.$({-1,-\frac{1}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,與y=x-1為同一函數(shù)的是(  )
A.y=$\sqrt{{{(x-1)}^2}}$B.y=$\root{3}{{{{(x-1)}^3}}}$C.y=$\frac{{{x^2}-1}}{x+1}$D.$y={(\sqrt{x-1})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在幾何體①圓錐;②正方體;③圓柱;④球;⑤正四面體中,三視圖完全一樣的是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.cos1740°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列:$\frac{1}{1}$,$\frac{2}{1}$,$\frac{1}{2}$,$\frac{3}{1}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{4}{1}$,$\frac{3}{2}$,$\frac{2}{3}$,$\frac{1}{4}$,…,依它的前10項(xiàng)的規(guī)律,這個(gè)數(shù)列的第2013項(xiàng)a2013滿足( 。
A.0<a2013<$\frac{1}{10}$B.$\frac{1}{10}$≤a2013<1C.1≤a2013≤10D.a2013>10

查看答案和解析>>

同步練習(xí)冊答案