【題目】已知曲線的參數(shù)方程是為參數(shù),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;

(2)已知點(diǎn)、的極坐標(biāo)分別是、,直線與曲線相交于P、Q兩點(diǎn),射線OP與曲線相交于點(diǎn)A,射線OQ與曲線相交于點(diǎn)B,求的值.

【答案】(1),;(2)

【解析】分析:(1)把曲線的參數(shù)方程化為普通方程,再把普通方程化為極坐標(biāo)方程;
把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程即可;
(Ⅱ)由點(diǎn)是圓的圓心得線段是圓的直徑,從而得
在極坐標(biāo)系下,設(shè),,,分別代入橢圓方程中,求出的值,求和即得的值.

詳解:

1曲線的參數(shù)方程是為參數(shù),

化為普通方程是;

化為極坐標(biāo)方程是;

曲線的極坐標(biāo)方程是

化為直角坐標(biāo)方程是;

2點(diǎn)、的極坐標(biāo)分別是、,

直角坐標(biāo)系下點(diǎn);

直線與圓相交于P、Q兩點(diǎn),所得線段PQ是圓的直徑;

,,

A、B是橢圓上的兩點(diǎn),

在極坐標(biāo)系下,設(shè),,分別代入方程中,

,

;

解得,

;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某技術(shù)公司新開發(fā)了A,B兩種新產(chǎn)品,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

產(chǎn)品A

8

12

40

32

8

產(chǎn)品B

7

18

40

29

6


(1)試分別估計(jì)產(chǎn)品A,產(chǎn)品B為正品的概率;
(2)生產(chǎn)一件產(chǎn)品A,若是正品可盈利80元,次品則虧損10元;生產(chǎn)一件產(chǎn)品B,若是正品可盈利100元,次品則虧損20元;在(1)的前提下.記X為生產(chǎn)一件產(chǎn)品A和一件產(chǎn)品B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,設(shè)a∈R,若關(guān)于x的不等式f(x)≥| +a|在R上恒成立,則a的取值范圍是(  )
A.[﹣ ,2]
B.[﹣ ]
C.[﹣2 ,2]
D.[﹣2 , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)若上單調(diào)遞增,求正數(shù)的最大值;

2)若函數(shù)內(nèi)恰有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1:y=cosx,C2:y=sin(2x+ ),則下面結(jié)論正確的是(  )
A.把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個(gè)單位長(zhǎng)度,得到曲線C2
B.把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移 個(gè)單位長(zhǎng)度,得到曲線C2
C.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個(gè)單位長(zhǎng)度,得到曲線C2
D.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實(shí)數(shù)滿足約束條件,的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答下列問題:

1)求平行于直線3x+4y- 2=0,且與它的距離是1的直線方程;

2)求垂直于直線x+3y -5=0且與點(diǎn)P( -1,0)的距離是的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ,求x的值;
(Ⅱ)記f(x)= ,求f(x)的最大值和最小值以及對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究型學(xué)習(xí)小組調(diào)查研究高中生使用智能手機(jī)對(duì)學(xué)習(xí)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如下:

使用智能手機(jī)

不使用智能手機(jī)

合計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀

學(xué)習(xí)成績(jī)不優(yōu)秀

合計(jì)

(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù),你是否有的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響?

(2)為進(jìn)一步了解學(xué)生對(duì)智能手機(jī)的使用習(xí)慣,現(xiàn)從全校使用智能手機(jī)的高中生中(人數(shù)很多)隨機(jī)抽取 人,求抽取的學(xué)生中學(xué)習(xí)成績(jī)優(yōu)秀的與不優(yōu)秀的都有的概率.

附:

查看答案和解析>>

同步練習(xí)冊(cè)答案