選修4-2  矩陣與變換
已知矩陣M=的一個特征值為3,求另一個特征值及其對應的一個特征向量.
【答案】分析:根據(jù)特征多項式的一個零點為3,可得x=1,再回代到方程f(λ)=0即可解出另一個特征值為λ2=-1.最后利用求特征向量的一般步驟,可求出其對應的一個特征向量.
解答:解:矩陣M的特征多項式為
f(λ)==(λ-1)(λ-x)-4.
∵λ1=3方程f(λ)=0的一根,
∴(3-1)(3-x)-4=0,可得x=1,M=
∴方程f(λ)=0即(λ-1)(λ-1)-4=0,λ2-2λ-3=0
可得另一個特征值為:λ2=-1,
設(shè)λ2=-1對應的一個特征向量為α=,
則由λ2α=Mα,得
得x=-y,可令x=1,則y=-1,
所以矩陣M的另一個特征值為-1,對應的一個特征向量為α=
點評:本題給出含有字母參數(shù)的矩陣,在知其一個特征值的情況下求另一個特征值和相應的特征向量,考查了特征值與特征向量的計算的知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(選修4-2 矩陣與變換)
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M'(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-2   矩陣與變換
T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M(2x,4y).圓C:x2+y2=1在變換T的作用下變成了什么圖形?

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省漳州市四地七校高三第四次聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

(選修4—2   矩陣與變換)(本題滿分7分)

變換是將平面上每個點的橫坐標乘2,縱坐標乘4,變到點。

(Ⅰ)求變換的矩陣;

(Ⅱ)圓在變換的作用下變成了什么圖形?

 

查看答案和解析>>

科目:高中數(shù)學 來源:福建省09-10學年高二下學期期末數(shù)學理科考試試題 題型:解答題

(共2小題做答,每小題7分)

1.(選修4—2   矩陣與變換)(本題滿分7分)

變換是將平面上每個點的橫坐標乘2,縱坐標乘4,變到點。

(1)求變換的矩陣;

(2)圓在變換的作用下變成了什么圖形?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省廈門外國語學校高三(上)第四次段考數(shù)學試卷(理科)(解析版) 題型:解答題

(選修4-2 矩陣與變換)
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M'(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?

查看答案和解析>>

同步練習冊答案