14.在△ABC中,(-$\sqrt{2}$a+b)cos C+ccos B=0,其中a,b,c分別是角A,B,C的對(duì)邊.
(1)求C;
(2)若a=2,b=$\sqrt{2}$,求c.

分析 (1)由正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式化簡(jiǎn)已知等式可得sinA(-$\sqrt{2}$cosC+1)=0,結(jié)合sinA≠0,可求cosC,結(jié)合范圍C∈(0,π),可求C的值.
(2)由余弦定理即可解得c的值.

解答 解:(1)∵(-$\sqrt{2}$a+b)cos C+ccos B=0,
∴(-$\sqrt{2}$sinA+sinB)cosC+sinCcosB=0,
∴sinA(-$\sqrt{2}$cosC+1)=0,
∵A∈(0,π),可得sinA≠0,
∴cosC=$\frac{\sqrt{2}}{2}$,
又∵C∈(0,π),
∴C=$\frac{π}{4}$.
(2)由余弦定理可得:c2=a2+b2-2abcosC=4+2-2×$2×\sqrt{2}×\frac{\sqrt{2}}{2}$=2,
解得:c=$\sqrt{2}$.

點(diǎn)評(píng) 本題主要考查了正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)滿足$f(x)+1=\frac{1}{{f({x+1})}}$,當(dāng)0≤x≤1時(shí),f(x)=x,若方程f(x)-mx-m=0(x∈(-1,1])有兩個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)m的最大值是( 。
A.$-\frac{1}{2}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=$\frac{6x}{{1+{x^2}}}$在區(qū)間[0,3]的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.對(duì)于函數(shù):①f(x)=4x+$\frac{1}{x}$-5,②f(x)=|log2x|-($\frac{1}{2}$)x,③$f(x)=lnx-\frac{1}{x}$,判斷如下兩個(gè)命題的真假:命題甲:f(x)在區(qū)間(1,2)上是增函數(shù);命題乙:f(x)在區(qū)間(0,+∞)上恰有兩個(gè)零點(diǎn)x1,x2,且x1x2<1;能使命題甲、乙均為真的函數(shù)的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若將函數(shù)$f(x)=\sqrt{3}sinx-cosx$的圖象向右平移m(0<m<π)個(gè)單位長(zhǎng)度,得到的圖象關(guān)于原點(diǎn)對(duì)稱,則m=( 。
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知△ABC中,A=$\frac{π}{2}$,a=2,b=$\sqrt{3}$,則B=(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,已知b=2a,B=30°,則cosA=$\frac{{\sqrt{15}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若f(a+b)=f(a)•f(b),且f(1)=2,則$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2017)}{f(2016)}$=4032.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.有三個(gè)不同的信箱,今有四封不同的信欲投其中,則不同的投法有81種.

查看答案和解析>>

同步練習(xí)冊(cè)答案