6.如圖,為測得河對岸塔AB的高,先在河岸上選一點C,使C在塔底B的正東方向上,測得點A的仰角為60°,再由點C沿北偏東15°方向走10m到位置D,測得∠BDC=45°,則塔AB的高是( 。▎挝唬簃)
A.10$\sqrt{2}$B.10$\sqrt{6}$C.10$\sqrt{3}$D.10

分析 設(shè)塔高為x米,根據(jù)題意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,從而有BC=$\frac{\sqrt{3}}{3}x$,在△BCD中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC,從而可求x即塔高.

解答 解:設(shè)塔高為x米,根據(jù)題意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,
從而有BC=$\frac{\sqrt{3}}{3}x$,AC=$\frac{2\sqrt{3}}{3}x$,
在△BCD中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30°
由正弦定理可得,$\frac{BC}{sin∠BDC}=\frac{CD}{sin∠CBD}$
可得,BC=$\frac{10sin45°}{sin30°}$=10$\sqrt{2}$=$\frac{\sqrt{3}}{3}x$
則x=10$\sqrt{6}$;
所以塔AB的高是10$\sqrt{6}$米;
故選:B.

點評 本題主要考查了正弦定理在實際問題中的應(yīng)用,解決本題的關(guān)鍵是要把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,即正確建立數(shù)學(xué)模型,結(jié)合已知把題目中的數(shù)據(jù)轉(zhuǎn)化為三角形中的數(shù)據(jù),進而選擇合適的公式進行求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.兩直線x+y-1=0,x+y+1=0的距離是( 。
A.2B.1C.3D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=2sin(ωx+φ)$({ω>0,|φ|<\frac{π}{2}})$的圖象如圖所示,則函數(shù)f(x)的解析式是(  )
A.$f(x)=2sin({\frac{10}{11}x+\frac{π}{6}\;})$B.$f(x)=2sin({\frac{10}{11}x-\frac{π}{6}\;})$
C.$f(x)=2sin({2x+\frac{π}{6}\;})$D.$f(x)=2sin({2x-\frac{π}{6}\;})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某中學(xué)為了解初三年級學(xué)生“擲實心球”項目的整體情況,隨機抽取男、女生各20名進行測試,記錄的數(shù)據(jù)如下:

已知該項目評分標準為:
 男生投擲距離(米)[5.4,6.0)[6.0,6.6)[6.6,7.4)[7.4,7.8)[7.8,8.6)[8.6,10.0)[10.0,+∞)
 
 女生投擲距離(米)
 
[5.1,5.4)[5.4,5.6)[5.6,6.4)[6.4,6.8)[6.8,7.2)[7.2,7.6)[7.6,+∞)
 個人得分(分) 
 4 5 6 7 8 9 10
(Ⅰ)求上述20名女生得分的中位數(shù)和眾數(shù);
(Ⅱ)從上述20名男生中,有6人的投擲距離低于7.0米,現(xiàn)從這6名男生中隨機抽取2名男生,求抽取的2名男生得分都是4分的概率;
(Ⅲ)根據(jù)以上樣本數(shù)據(jù)和你所學(xué)的統(tǒng)計知識,試估計該年級學(xué)生實心球項目的整體情況.(寫出兩個結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某學(xué)校開設(shè)A類選修課3門,B類選修課4門,一位同學(xué)從中一共選3門,要求兩類課必須選一門,則不同選法共( 。
A.30種B.35種C.42種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項和Sn滿足:Sn=n2,等比數(shù)列{bn}滿足:b2=2,b5=16
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足4an=an-1-3(n≥2)且n∈N*,且a1=-$\frac{3}{4}$,設(shè)bn+2=3log${\;}_{\frac{1}{4}}$(an+1)(n∈N*),數(shù)列{cn}滿足cn=(an+1)bn
(Ⅰ)求證{an+1}是等比數(shù)列并求出數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{cn}的前n項和Sn;
(Ⅲ)對于任意n∈N*,t∈[0,1],cn≤tm2-m-$\frac{1}{2}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=x2-x+7,求f′(4)=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.y=ln(4-2x)的定義域為{x|x<2}.

查看答案和解析>>

同步練習冊答案