A. | 10$\sqrt{2}$ | B. | 10$\sqrt{6}$ | C. | 10$\sqrt{3}$ | D. | 10 |
分析 設(shè)塔高為x米,根據(jù)題意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,從而有BC=$\frac{\sqrt{3}}{3}x$,在△BCD中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC,從而可求x即塔高.
解答 解:設(shè)塔高為x米,根據(jù)題意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,
從而有BC=$\frac{\sqrt{3}}{3}x$,AC=$\frac{2\sqrt{3}}{3}x$,
在△BCD中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30°
由正弦定理可得,$\frac{BC}{sin∠BDC}=\frac{CD}{sin∠CBD}$
可得,BC=$\frac{10sin45°}{sin30°}$=10$\sqrt{2}$=$\frac{\sqrt{3}}{3}x$
則x=10$\sqrt{6}$;
所以塔AB的高是10$\sqrt{6}$米;
故選:B.
點評 本題主要考查了正弦定理在實際問題中的應(yīng)用,解決本題的關(guān)鍵是要把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,即正確建立數(shù)學(xué)模型,結(jié)合已知把題目中的數(shù)據(jù)轉(zhuǎn)化為三角形中的數(shù)據(jù),進而選擇合適的公式進行求解.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=2sin({\frac{10}{11}x+\frac{π}{6}\;})$ | B. | $f(x)=2sin({\frac{10}{11}x-\frac{π}{6}\;})$ | ||
C. | $f(x)=2sin({2x+\frac{π}{6}\;})$ | D. | $f(x)=2sin({2x-\frac{π}{6}\;})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
男生投擲距離(米) | … | [5.4,6.0) | [6.0,6.6) | [6.6,7.4) | [7.4,7.8) | [7.8,8.6) | [8.6,10.0) | [10.0,+∞) |
女生投擲距離(米) | … | [5.1,5.4) | [5.4,5.6) | [5.6,6.4) | [6.4,6.8) | [6.8,7.2) | [7.2,7.6) | [7.6,+∞) |
個人得分(分) | … | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30種 | B. | 35種 | C. | 42種 | D. | 48種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com