在正四面體ABCD中,P,Q,R分別為所在棱的中點,則四面體過P,Q,R三點的截面圖形為
 
考點:平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:由已知中在正四面體ABCD中,P,Q,R分別為所在棱的中點,畫出滿足條件的圖形,數(shù)形結(jié)合,分類討論,可得截面的形狀.
解答: 解:在正四面體ABCD中,
①若P,Q,R均為側(cè)棱的中點時,如圖所示:

此時截面圖形為等邊三角形,
②若P,Q,R有兩個為側(cè)棱的中點時,如圖所示:

此時截面圖形為菱形,
③若P,Q,R有一個為側(cè)棱的中點時,
此時截面圖形仍為等邊三角形或菱形,
故答案為:等邊三角形或菱形
點評:本題考查的知識點是幾何體的截面,考查學生的空間想像能力,難度不大,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,側(cè)棱垂直底面的三棱柱ABC-A1B1C1的底面ABC位于平行四邊形ACDE中,AE=2,AC=4,∠AEB=60°,點B為DE中點,連接A1E.
(1)求證:平面A1BC⊥平面A1ABB1;
(2)設四棱錐A1-AEBC與四棱錐A1-B1BCC1的體積分別為V1,V2,求V1:V2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點分別為F1、F2,以F1F2為直徑的圓交雙曲線于點A,若∠F1F2A=
π
6
,則雙曲線的離心率為(  )
A、1+
3
B、4+2
3
C、4-
3
D、2+
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線Ax+By+C=0關(guān)于直線x+y=0對稱的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m>0,命題p:
x2
16+m
+
y2
16
=1的離心率e≤
3
5
,命題q:x2-mx+4=0有實數(shù)根,且¬p∨q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y2=4x的焦點坐標為( 。
A、(2,0)
B、(1,0)
C、(0,-4)
D、(-2,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=4sin(-2x+
π
6
)-1,且lgf(x)>0,則f(x)單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某實驗室需購某種化工原料106千克,現(xiàn)在市場上該原料有兩種包裝,一種是每袋35千克,價格為140元;另一種是每袋24千克,價格為120元.在滿足需要的條件下,最少要花費
 
元.

查看答案和解析>>

同步練習冊答案