分析 設(shè)球的半徑為1,則正方體棱長為2,根據(jù)正四棱錐與內(nèi)切球的關(guān)系,列方程得出正四棱錐的底面邊長和高的關(guān)系,代入棱錐的體積公式求出V1的最小值.
解答 解:設(shè)球的半徑r=1,則正方體的棱長為2r=2,∴V2=23=8
作正四棱錐過高SO和底面對邊中點的截面SEF,則球的大圓為等腰三角形SEF的內(nèi)切圓.
設(shè)正四棱錐的底面邊長為a,高為h,則OE=PE=$\frac{a}{2}$,PM=MO=1,SM=h-1,SE=$\sqrt{{h}^{2}+\frac{{a}^{2}}{4}}$,
∴SP=$\sqrt{(h-1)^{2}-1}$=$\sqrt{{h}^{2}-2h}$.
∴$\sqrt{{h}^{2}-2h}$+$\frac{a}{2}$=$\sqrt{{h}^{2}+\frac{{a}^{2}}{4}}$,即h2-2h+$\frac{{a}^{2}}{4}$+a$\sqrt{{h}^{2}-2h}$=h2+$\frac{{a}^{2}}{4}$,
∴a=$\frac{2h}{\sqrt{{h}^{2}-2h}}$.
∴V1=$\frac{1}{3}$a2h=$\frac{4}{3}$•$\frac{{h}^{2}}{h-2}$=$\frac{4}{3}$•(h-2+$\frac{4}{h-2}$+4)≥$\frac{4}{3}×(2\sqrt{4}+4)$=$\frac{32}{3}$.
∴k=$\frac{{V}_{1}}{{V}_{2}}$=$\frac{{V}_{1}}{8}$≥$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.
點評 本題考查了棱柱,棱錐與內(nèi)切球的位置關(guān)系,棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=0或3x-y-3=0 | B. | y=0或27x-4y-27=0 | ||
C. | y=0或x=1 | D. | x=1或3x-y-3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{15}}}{3}$ | B. | $\frac{{\sqrt{17}}}{3}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{\sqrt{7}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
收入x(萬元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y(萬元) | 5.2 | 6.5 | 7.0 | 7.5 | 8.8 |
A. | 10.8 | B. | 11.8 | C. | 12.8 | D. | 9.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 3 | 4 | 5 | 6 |
y | 2.5 | t | 4 | 4.5 |
A. | 4.5 | B. | 3.5 | C. | 3.15 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com