若數(shù)列{an}滿足an+1+an-1≥2an(n≥2),則稱數(shù)列{an}為凹數(shù)列.已知等差數(shù)列{bn}的公差為d,b1=2.且數(shù)列{
bn
n
}是凹數(shù)列,則d的取值范圍為
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:求出bn=2+(n-1)d,利用數(shù)列{
bn
n
}是凹數(shù)列,結(jié)合新定義,求出d的取值范圍.
解答: 解:∵等差數(shù)列{bn}的公差為d,b1=2,
∴bn=2+(n-1)d,
∵數(shù)列{
bn
n
}是凹數(shù)列,
2+nd
n+1
+
2+(n-2)d
n-1
2+(n-1)d
n
×2,
∴d≤2,
故答案為:(-∞,2].
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng),考查新定義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市現(xiàn)有居民300萬(wàn)人,每天有1%的人選擇乘出租車出行,記每個(gè)人的乘車?yán)锍虨閤(km),1≤x≤21.由調(diào)查數(shù)據(jù)得到x的頻率分布直方圖(如圖),在直方圖的乘車?yán)锍谭纸M中,可以用各組在區(qū)間中點(diǎn)值代表該組的各個(gè)值,乘車?yán)锍搪淙朐搮^(qū)間的頻率作為乘車?yán)锍倘≡搮^(qū)間中點(diǎn)值的概率,現(xiàn)規(guī)定乘車?yán)锍蘹≤3時(shí),乘車費(fèi)用為10元;當(dāng)x>3時(shí),每超出1km(不足1km時(shí)按1km計(jì)算),乘車費(fèi)用增加1.3元.
(Ⅰ)求從乘客中任選2人乘車?yán)锍坛^(guò)10km的概率;
(Ⅱ)試估計(jì)出租車公司一天的總收入是多少?(精確到0.01萬(wàn)元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=f(1-x),當(dāng)x∈[0,1]時(shí),f(x)=x2.則函數(shù)f(x)的圖象與函數(shù)y=ln|x|的圖象交點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x=1是方程ax2+bx+c=0的一個(gè)根,q:a+b+c=0,則命題p是命題q的( 。
A、充分不必要
B、必要不充分
C、既不充分又不必要
D、充要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義域?yàn)镈的函數(shù)f(x),同時(shí)滿足下列條件:①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減:②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b];那么把函數(shù)y=f(x)(x∈D)叫做閉函數(shù).若y=k+
x
(k為常數(shù),k<0)是閉函數(shù),則常數(shù)k是的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列4個(gè)命題
①“若x+y=0,則x,y互為相反數(shù)”的逆命題; 
②“若x2≥4,則x≥2”的逆否命題
③若f(x)存在導(dǎo)函數(shù),則“f′(x0)=0”是“x0為f(x)的極值點(diǎn)”的充要條件
④直線l1不再平面α內(nèi),直線l2在平面α內(nèi),則l1∥α是l1∥l2的必要不充分條件.
其中正確命題的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosx,則它可以由y=f′(x)的圖象按照下列哪種交換得到(  )
A、向右平移
π
2
個(gè)單位
B、向左平移
π
2
個(gè)單位
C、向右平移
π
3
個(gè)單位
D、向左平移
2
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b,c,d成等比數(shù)列,且不等式-x2+3x-2>0的解集為(b,c),則ad=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由余弦函數(shù)的周期性可知:
余弦函數(shù)在每一個(gè)閉區(qū)間
 
上都是增函數(shù),其值從-1增大到1;在每一個(gè)閉區(qū)間
 
上都是減函數(shù),其值從1減小到-1.
從上述對(duì)正弦函數(shù)、余弦函數(shù)的單調(diào)性的討論中容易得到:
正弦函數(shù)當(dāng)且僅當(dāng)x=
 
時(shí)取得最大值1,當(dāng)且僅當(dāng)x=
 
時(shí)取得最小值-1;
余弦函數(shù)當(dāng)且僅當(dāng)x=
 
時(shí)取得最大值1;當(dāng)且僅當(dāng)x=
 
時(shí)取得最小值-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案