(1)若m,n∈R,由m2+n2≥2mn可得2(m2+n2)≥m2+n2+2mn,即有2(m2+n2)≥(m+n)2
(2)已知x>0,y>0,且x+y=1,利用(1)中不等式,求+的最大值并求出對應(yīng)的x,y的值.
【答案】分析:利用題中給出的不等式2(m2+n2)≥(m+n)2,結(jié)合條件x+y=1,構(gòu)造出不等關(guān)系,即可求出答案.
解答:解:…(3分)
,有最大值2…(14分)
點評:本題主要考查了不等式的證明,考查了利用基本不等式求最值,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足(1)當m,n∈R時,f(m+n)=f(m)•f(n);(2)f(0)≠0;(3)當x<0時,f(x)>1,則在下列結(jié)論中:
①f(a)•f(-a)=1;
②f(x)在R上是遞減函數(shù);
③存在x0,使f(x0)<0;
④若f(2)=
2
,則f(
1
4
)=
1
4
,f(
1
6
)=
1
6
;
正確結(jié)論的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

m
1+i
=1-ni(m,n∈R).則m+ni為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)若m,n∈R,由m2+n2≥2mn可得2(m2+n2)≥m2+n2+2mn,即有2(m2+n2)≥(m+n)2;
(2)已知x>0,y>0,且x+y=1,利用(1)中不等式,求
x+
1
2
+
y+
1
2
的最大值并求出對應(yīng)的x,y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于a>0且a≠1,在下列命題中,正確的命題是( 。

查看答案和解析>>

同步練習冊答案