13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{6}}{3}$,連接橢圓的四個頂點得到的菱形的面積為4$\sqrt{3}$.
(1)求橢圓的方程;
(2)若過點(3,0)的直線L與橢圓交于P,Q兩點,若OP⊥OQ(O為坐標原點),求直線L的方程.

分析 (1)利用橢圓的離心率e=$\frac{\sqrt{6}}{3}$,連接橢圓的四個頂點得到的菱形的面積為4$\sqrt{3}$,建立方程,求出a,b,即可求橢圓的方程;
(2)設(shè)出直線方程,將直線方程與橢圓方程聯(lián)立,利用韋達定理得到交點的坐標滿足的關(guān)系,利用向量垂直的充要條件列出等式,求出直線的斜率,即得到直線的方程.

解答 解:(1)∵橢圓的離心率e=$\frac{\sqrt{6}}{3}$,連接橢圓的四個頂點得到的菱形的面積為4$\sqrt{3}$,
∴$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$,$\frac{1}{2}•2a•2b$=4$\sqrt{3}$,
∴a=$\sqrt{6}$,b=$\sqrt{2}$,
∴橢圓的方程為$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$;
(2)設(shè)直線l的方程為y=k(x-3),P(x1,y1),Q(x2,y2).
由直線與橢圓方程聯(lián)立可得(1+3k2)x2-18k2x+27k2-6=0.
∴x1+x2=$\frac{18{k}^{2}}{1+3{k}^{2}}$,x1x2=$\frac{27{k}^{2}-6}{1+3{k}^{2}}$
∵y1=k(x1-3),y2=k(x2-3),
∴y1y2=k2(x1-3)(x2-3)=$\frac{3{k}^{2}}{1+3{k}^{2}}$,
∵OP⊥OQ,∴y1y2+x1x2=0,
∴$\frac{27{k}^{2}-6}{1+3{k}^{2}}$+$\frac{3{k}^{2}}{1+3{k}^{2}}$=0
得k2=$\frac{1}{5}$,
此時△>0,∴k=±$\frac{\sqrt{5}}{5}$,
∴所求直線的方程為y=±$\frac{\sqrt{5}}{5}$(x-3).

點評 解決直線與圓錐曲線的位置關(guān)系的問題,一般將直線的方程與圓錐曲線方程聯(lián)立,利用韋達定理找突破口.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.在區(qū)間(0,1)上隨機取兩個實數(shù)m,n,則關(guān)于x的一元二次方程x2-2$\sqrt{m}$x+2n=0有實數(shù)根的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義運算a*b為執(zhí)行如圖所示的程序框圖輸出的S值,則(sin$\frac{5π}{12}}$)*(${cos\frac{5π}{12}}$)的值為( 。
A.$\frac{{2-\sqrt{3}}}{4}$B.$\frac{{2+\sqrt{3}}}{4}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)函數(shù)f1(x)=x3,f2(x)=$\left\{\begin{array}{l}{2{x}^{2},x∈[0,\frac{1}{2}]}\\{lo{g}_{\frac{1}{4}}x,x∈(\frac{1}{2},1]}\end{array}\right.$,f3(x)=$\left\{\begin{array}{l}{{3}^{1-2x},x∈[0,\frac{1}{2}]}\\{1,x∈(\frac{1}{2},1]}\end{array}\right.$,f4(x)=$\frac{1}{4}$|sin(2πx)|,等差數(shù)列{an}中,a1=0,a2015=1,bn=|fk(an+1)-fk(an)|(k=1,2,3,4),用pk表示數(shù)列{bn}的前2014項的和,則( 。
A.P4<1=P1=P2<P3=2B.P1<1=P4=P2<P3=2C.P4=1=P1=P2<P3=2D.P4=1=P1<P2<P3=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知奇函數(shù)y=$\left\{\begin{array}{l}{{a}^{x},x>0}\\{f(x),x<0}\end{array}\right.$(a>0且a≠1)的部分圖象如圖所示,那么f(x)=( 。
A.2xB.$-{(\frac{1}{2})^x}$C.${({\frac{1}{2}})^x}$D.-2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列各式正確的是( 。
A.1.70.2>0.73B.lg3.4<lg2.9
C.log0.31.8<log0.32.7D.1.72>1.73

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)F為拋物線y=x2的焦點,則焦點F為( 。
A.(0,1)B.(1,0)C.(0,$\frac{1}{4}$)D.($\frac{1}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)f(x)=2sinxcos(x-$\frac{π}{3}$),x∈[0,$\frac{3π}{4}$]的最小值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=xex-asinxcosx(a∈R,其中e是自然對數(shù)的底數(shù)).
(1)當a=0時,求f(x)的極值;
(2)若對于任意的x∈[0,$\frac{π}{2}}$],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實數(shù)a,使得函數(shù)f(x)在區(qū)間$({0,\frac{π}{2}})$上有兩個零點?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案