【題目】若y=f(x)=Asin(ωx+φ)(A>0,ω>0, 的部分圖象如圖所示.
(I)求函數(shù)y=f(x)的解析式;
(II)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象;若y=g(x)圖象的一個對稱中心為 ,求θ的最小值.

【答案】解:(I)根據(jù)y=f(x)=Asin(ωx+φ)(A>0,ω>0, 的部分圖象知,

周期 ,∴ω=2,且A=2.

再根據(jù)五點法作圖可得ω(﹣ )+φ=0,求得φ= ,∴f(x)=2sin(2x+ ).

把x=0,y=1代入上式求得

(II)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)= 的圖象,

若y=g(x)圖象的一個對稱中心為 ,則2 +2θ+ =kπ,k∈Z,即θ= ,

故要求θ的最小值為


【解析】(I)由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.(II)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數(shù)的圖象的對稱性,求得θ的最小值.
【考點精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知t為實數(shù),函數(shù)f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1.
(1)若函數(shù)y=g(ax+1)﹣kx是偶函數(shù),求實數(shù)k的值;
(2)當(dāng)x∈[1,4]時,f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍;
(3)設(shè)t=4,當(dāng)x∈[m,n]時,函數(shù)y=|f(x)|的值域為[0,2],若n﹣m的最小值為 ,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的長方體中,AB=2 ,AD= , = ,E、F分別為 的中點,則異面直線DE、BF所成角的大小為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知﹣1,a1 , a2 , 8成等差數(shù)列,﹣1,b1 , b2 , b3 , ﹣4成等比數(shù)列,那么 的值為( )
A.﹣5
B.5
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:x2﹣4ax+3a2<0(其中a>0,x∈R),命題q:﹣x2+5x﹣6≥0,x∈R.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(﹣x)=﹣f(x),則稱f(x)為“局部奇函數(shù)”. (I) 已知二次函數(shù)f(x)=ax2+2bx﹣3a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(II) 設(shè)f(x)=2x+m﹣1是定義在[﹣1,2]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
(III) 設(shè)f(x)=4x﹣m2x+1+m2﹣3,若f(x)不是定義域R上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)定義在區(qū)間(﹣1,1)內(nèi),對于任意的x,y∈(﹣1,1)有f(x)+f(y)=f( ),且當(dāng)x<0時,f(x)>0.
(1)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;
(2)若f(﹣ )=1,求方程f(x)+ =0的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題類A)以橢圓 +y2=1(a>1)短軸端點A(0,1)為直角頂點,作橢圓內(nèi)接等腰直角三角形,試判斷并推證能作出多少個符合條件的三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線關(guān)于x軸對稱,它的頂點在坐標(biāo)原點,點P(1,2),A(x1 , y1),B(x2 , y2)均在拋物線上.

(1)求該拋物線方程;
(2)若AB的中點坐標(biāo)為(1,﹣1),求直線AB方程.

查看答案和解析>>

同步練習(xí)冊答案