【題目】如圖,拋物線(xiàn)關(guān)于x軸對(duì)稱(chēng),它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),A(x1 , y1),B(x2 , y2)均在拋物線(xiàn)上.
(1)求該拋物線(xiàn)方程;
(2)若AB的中點(diǎn)坐標(biāo)為(1,﹣1),求直線(xiàn)AB方程.
【答案】
(1)解:由題意可設(shè)拋物線(xiàn)方程為y2=2px(p>0),
∵P(1,2)在拋物線(xiàn)上,
∴22=2p,即p=2.
∴拋物線(xiàn)方程為:y2=4x;
(2)解:∵A(x1,y1),B(x2,y2)在拋物線(xiàn)上,
∴ , .
兩式作差得:(y1﹣y2)(y1+y2)=4(x1﹣x2),
.
又AB的中點(diǎn)坐標(biāo)為(1,﹣1),
∴y1+y2=﹣2,
則 .
∴直線(xiàn)AB方程為y+1=﹣2(x﹣1),
即2x+y﹣1=0.
【解析】(1)由題意設(shè)出拋物線(xiàn)方程,代入P點(diǎn)坐標(biāo)求p,則拋物線(xiàn)方程可求;(2)把A,B的坐標(biāo)代入拋物線(xiàn)方程,作差后結(jié)合AB的中點(diǎn)坐標(biāo)求出AB所在直線(xiàn)的斜率,由點(diǎn)斜式得AB所在直線(xiàn)方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若y=f(x)=Asin(ωx+φ)(A>0,ω>0, 的部分圖象如圖所示.
(I)求函數(shù)y=f(x)的解析式;
(II)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)的圖象;若y=g(x)圖象的一個(gè)對(duì)稱(chēng)中心為 ,求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an﹣a1 , 且a1 , a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列 的前n項(xiàng)和Tn , 求使得 成立的n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=2,a2=3,an>0,且滿(mǎn)足an+12﹣an=an+1+an2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè) (λ為正偶數(shù),n∈N*),是否存在確定λ的值,使得對(duì)任意n∈N* , 有Cn+1>Cn恒成立,若存在,求出λ的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x1滿(mǎn)足2x+2x=5,x2滿(mǎn)足2x+2log2(x﹣1)=5,x1+x2=( )
A.
B.3
C.
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx,則( )
A.f(x)在(0,+∞)上是增函數(shù)
B.f(x)在 上是增函數(shù)
C.當(dāng)x∈(0,1)時(shí),f(x)有最小值
D.f(x)在定義域內(nèi)無(wú)極值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為1的正方體中,P是側(cè)棱CC1上的一點(diǎn),CP=m
(1)試確定m,使直線(xiàn)AP與平面BDD1B1所成角的正切值為 ;
(2)在線(xiàn)段A1C1上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的m,D1Q在平面APD1上的射影垂直于AP,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (其中a為非零實(shí)數(shù)),且方程 有且僅有一個(gè)實(shí)數(shù)根. (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)證明:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若(2a﹣c)cosB=bcosC.
(1)求角B的大小,
(2)若a=3,△ABC的面積為 ,求 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com