19.設(shè)Sn為等差數(shù)列{an}的前n項和,若a3=3,S9-S6=27,則該數(shù)列的首項a1等于( 。
A.$-\frac{6}{5}$B.$-\frac{3}{5}$C.$\frac{6}{5}$D.$\frac{3}{5}$

分析 利用等差數(shù)列的通項公式及其前n項和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,由a3=3,S9-S6=27,可得$\left\{\begin{array}{l}{{a}_{1}+2d=3}\\{3{a}_{1}+21d=27}\end{array}\right.$,解得a1=$\frac{3}{5}$.
故選:D.

點評 熟練掌握等差數(shù)列的通項公式及其前n項和公式是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.甲罐中5個紅球,2個白球和3個黑球,乙罐中4個紅球,3個白球和3個黑球.先從甲罐中隨機取出一球放入乙罐,分別以A1,A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機取出一球,以B表示由乙罐取出的球是紅球的事件,則下列結(jié)論中正確的是( 。
A.P(B)=$\frac{2}{5}$
B.事件B與事件A1相互獨立
C.P(B|A1)=$\frac{5}{11}$
D.P(B)的值不能確定,它與A1,A2,A3中哪一個發(fā)生都有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知關(guān)于x的二次方程x2+2mx+2m+1=0.
(1)當m=1時,判斷方程根的情況.
(2)若方程有兩根,其中一根在區(qū)間(-1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在平面直角坐標系xOy中,已知雙曲線C1:2x2-y2=1.
(1)設(shè)F是C1的左焦點,E是C1右支上一點.若|EF|=2$\sqrt{2}$,求E點的坐標;
(2)設(shè)斜率為1的直線l交C1于P、Q兩點,若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設(shè)橢圓C2:4x2+y2=1.若M、N分別是C1、C2上的動點,且OM⊥ON,求證:O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設(shè)集合A={x|-1≤x≤2},B={x|log2x≤2},則A∩B=(0,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.復數(shù)z=$\frac{2}{1-i}$,則復數(shù)z的模是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知雙曲線的方程為16x2-9y2=144.
(1)求該雙曲線的實半軸長,虛半軸長,半焦距長,離心率;
(2)求該雙曲線的焦點坐標,頂點坐標,漸進線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)y=x3+3ax2+(a2+3a-1)x+a在x=-1時取得極值,則a=1,2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求值:
(1)${(ln\sqrt{5}+1)^0}+\frac{3}{2}•{(2\frac{1}{4})^{-\frac{1}{2}}}$-lg10;
(2)2cos$\frac{π}{2}+\frac{3}{4}tan\frac{π}{4}+{cos^2}\frac{π}{6}+sin\frac{3π}{2}$.

查看答案和解析>>

同步練習冊答案