4.復(fù)數(shù)z=$\frac{2}{1-i}$,則復(fù)數(shù)z的模是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{2}$

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)z,則復(fù)數(shù)z的?汕螅

解答 解:由復(fù)數(shù)z=$\frac{2×(1+i)}{(1-i)(1+i)}=1+i$,
則|z|=$\sqrt{1+1}=\sqrt{2}$.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,已知點(diǎn)P是反比例函數(shù)y=$\frac{2\sqrt{3}}{x}$(x>0)圖象上一個(gè)動點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.
(1)如圖1,⊙P運(yùn)動到與x軸相切,設(shè)切點(diǎn)為K,判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運(yùn)動到與x軸相交,設(shè)交點(diǎn)為B,C.當(dāng)四邊形ABCP是菱形時(shí):
①求出點(diǎn)A,B,C的坐標(biāo).
②在過A,B,C三點(diǎn)的拋物線上是否存在點(diǎn)M,使△MBP的面積是菱形ABCP面積的$\frac{1}{2}$?若存在,試求出所有滿足條件的M點(diǎn)的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={x|$\sqrt{x}$>2},B={x|1<x<5},則A∩B等于( 。
A.(1,4)B.(4,5)C.(1,5)D.(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C1的極坐標(biāo)方程為pcos(θ-$\frac{π}{3}$)=-1,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$,(其中α為參數(shù),α∈[0,2π)),點(diǎn)A,B分別在曲線C1,C2上.
(1)求曲線C1的直角坐標(biāo)方程和曲線C2的普通方程;
(2)試求兩曲線上點(diǎn)A,B距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若a3=3,S9-S6=27,則該數(shù)列的首項(xiàng)a1等于( 。
A.$-\frac{6}{5}$B.$-\frac{3}{5}$C.$\frac{6}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=3,AB=2,BC=$\sqrt{3}$,求P到BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.有一塊多邊形的菜地,它的水平放置的平面圖形的斜二測直觀圖是直角梯形(如圖)∠ABC=45°,AB=$\sqrt{2}$,AD=1,DC⊥BC,則這塊菜地的面積為$3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=ax2+x-lnx.
(1)若a=1,求函數(shù)y=f(x)的極值;
(2)若y=f(x)存在單調(diào)遞增區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.△ABC中,角A,B,C的對分別為a,b,c,且a(1+cosC)+c(1+cosA)=3b.
(1)求證:a,b,c成等差數(shù)列;
(2)求cosB的最小值.

查看答案和解析>>

同步練習(xí)冊答案