A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
分析 作出不等式組對應的平面區(qū)域,求出函數(shù)f(x)=ax2-2bx+3在區(qū)間[$\frac{1}{2}$,+∞)上是增函數(shù)的等價條件,求出對應的面積,根據(jù)幾何概型的概率公式進行求解即可.
解答 解:作出不等式組對應的平面區(qū)域如圖
若f(x)=ax2-2bx+3在區(qū)間[$\frac{1}{2}$,+∞)上是增函數(shù),
則$\left\{\begin{array}{l}{a>0}\\{-\frac{-2b}{2a}=\frac{a}≤\frac{1}{2}}\end{array}\right.$,即$\left\{\begin{array}{l}{a>0}\\{a-2b≥0}\end{array}\right.$,
則A(0,4),B(4,0),由$\left\{\begin{array}{l}{a+b-4=0}\\{a-2b=0}\end{array}\right.$得$\left\{\begin{array}{l}{a=\frac{8}{3}}\\{b=\frac{4}{3}}\end{array}\right.$,
即C($\frac{8}{3}$,$\frac{4}{3}$),
則△OBC的面積S=$\frac{1}{2}×4×$$\frac{4}{3}$=$\frac{8}{3}$.
△OAB的面積S=$\frac{1}{2}×4×$4=8.
則使函數(shù)f(x)=ax2-2bx+3在區(qū)間[$\frac{1}{2}$,+∞)上是增函數(shù)的概率P=$\frac{{S}_{△OBC}}{{S}_{△OAB}}$=$\frac{\frac{8}{3}}{8}=\frac{1}{3}$,
故選:A.
點評 本題主要考查幾何概型的概率的概率公式,作出不等式組對應的平面區(qū)域,求出對應的面積是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{1}{2},\sqrt{2}$) | B. | [$\frac{1}{2},\sqrt{2}$] | C. | [$\frac{\sqrt{2}}{2},\sqrt{2}$) | D. | [$\frac{\sqrt{2}}{2},\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (0,$\frac{3}{2}$) | C. | (-∞,1) | D. | (-∞,$\frac{4}{3}$) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com