A. | [$\frac{1}{2},\sqrt{2}$) | B. | [$\frac{1}{2},\sqrt{2}$] | C. | [$\frac{\sqrt{2}}{2},\sqrt{2}$) | D. | [$\frac{\sqrt{2}}{2},\sqrt{2}$] |
分析 設P(t,2-t),可得過O、A、P、B的圓的方程與已知圓的方程相減可得AB的方程,進而聯立直線方程解方程組可得中點Q的坐標,由點Q到直線的距離公式和不等式的性質可得.
解答 解:∵點P為直線l:x+y=2上的任意一點,∴可設P(t,2-t),
則過O、A、P、B的圓的方程為(x-$\frac{t}{2}$)2+(y-$\frac{2-t}{2}$)2=$\frac{1}{4}$[t2+(2-t)2],
化簡可得x2-tx+y2-(2-t)y=0,
與已知圓的方程相減可得AB的方程為tx+(2-t)y=1,
由直線OP的方程為(2-t)x-ty=0,
聯立兩直線方程可解得x=$\frac{t}{2{t}^{2}-4t+4}$,y=$\frac{2-t}{2{t}^{2}-4t+4}$,
故線段AB的中點Q($\frac{t}{2{t}^{2}-4t+4}$,$\frac{2-t}{2{t}^{2}-4t+4}$),
∴點Q到直線l的距離d=$\frac{|\frac{t}{2{t}^{2}-4t+4}+\frac{2-t}{2{t}^{2}-4t+4}-2|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$|2-$\frac{1}{{t}^{2}-2t+2}$|,
∵t2-2t+2=(t-1)2+1≥1,∴0<$\frac{1}{{t}^{2}-2t+2}$≤1,
∴-1≤-$\frac{1}{{t}^{2}-2t+2}$<0,∴1≤2-$\frac{1}{{t}^{2}-2t+2}$<2,
∴$\frac{\sqrt{2}}{2}$≤$\frac{\sqrt{2}}{2}$|2-$\frac{1}{{t}^{2}-2t+2}$|<$\sqrt{2}$,即d∈($\frac{\sqrt{2}}{2}$,$\sqrt{2}$],
故選:C.
點評 本題考查直線與圓的位置關系,涉及圓的相交弦和點到直線的距離公式,以及不等式求函數的值域,屬中檔題.
科目:高中數學 來源: 題型:選擇題
A. | a=$\frac{1}{2}$,b=1 | B. | a=-$\frac{1}{2}$,b=-1 | C. | a=-$\frac{1}{2}$,b=1 | D. | a=$\frac{1}{2}$,b=-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0.8413 | B. | 0.6587 | C. | 0.1587 | D. | 0.3413 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{3}{\sqrt{5}}$ | D. | $\frac{3}{\sqrt{5}}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com