設(shè)函數(shù)f(x)=x|x-a|的圖象與函數(shù)g(x)=|x-1|的圖象有三個(gè)不同的交點(diǎn),則a的范圍是
 
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:討論a的取值范圍,作出兩個(gè)函數(shù)的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出函數(shù)g(x)的圖象如圖,
若a=1,則f(x)=x|x-1|,此時(shí)兩個(gè)圖象只有1個(gè)交點(diǎn),不滿足條件,
當(dāng)a<1時(shí),函數(shù)f(x)=x|x-a|與g(x)只有一個(gè)交點(diǎn),不滿足條件,
當(dāng)a>1時(shí),函數(shù)f(x)=x|x-a|與g(x)有三個(gè)交點(diǎn),滿足條件,
故答案為:(1,+∞)
點(diǎn)評(píng):本題主要考查函數(shù)交點(diǎn)個(gè)數(shù)的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,cos2
A
2
=
b+c
2c
=
9
10
,c=5,求△ABC的外接圓半徑的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(a+1,b+1),Q(1,0),線段PQ與直線2x-3y+1=0有交點(diǎn),若存在M∈R+,使得-b-a2≤M恒成立,則M的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x(8-3x)
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=
1+3i
1-i
(i為虛數(shù)單位),則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1-2x)n關(guān)于x的展開(kāi)式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式的系數(shù)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)n很大時(shí),函數(shù)f(x)在區(qū)間[
i-1
n
,
i
n
]上的值可以用
 
以直代曲.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)可導(dǎo),且y=f(e2x),則y′=( 。
A、f′(e2x
B、f′(e2x)e2x
C、2f′(e2x
D、2f′(e2x)e2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F(1,0),短軸的一個(gè)端點(diǎn)B到F的距離等于焦距.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)F的直線l與橢圓C交于不同的兩點(diǎn)M,N,是否存在直線l,使得△BFM與△BFN的面積比值為2?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案