16.已知集合A={α|α=k•135°,k∈Z},B={β|β=k•150°,k∈Z,-10≤k≤8},求與A∩B中的角終邊相同的角的集合S.

分析 先求出A∩B={-1350,0},由此能求出與A∩B中的角終邊相同的角的集合.

解答 解:∵集合A={α|α=k•135°,k∈Z},
B={β|β=k•150°,k∈Z,-10≤k≤8},
換個字母,將B中的k換為m.
由k•135°=m•150°,m=-10,-9,-8,…,8
可得9k=10m,而9和10互質(zhì),所以m只能取9的倍數(shù)等式才能成立.
也就是m=-9,0兩個數(shù),相應(yīng)的k=-10,0.
∴A∩B={-1350,0},
∵-1350°=-4×360+90°,
∴與A∩B中的角終邊相同的角的集合:
S={β|β=k•360°或β=90°+k•360°,k∈Z}.

點評 本題考查終邊相同的角的集合的求法,是基礎(chǔ)題,解題時要認真審題,注意交集性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=m-|x-3|,不等式f(x)>2的解集為(2,4).
(1)求實數(shù)m值;
(2)若關(guān)于x的不等式|x-a|≥f(x)在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知雙曲線方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其右焦點為F.
(1)求以F為焦點,以雙曲線中心為頂點的拋物線方程;
(2)若直線y=2x+m,被拋物線所截的弦長的|AB|=$\sqrt{85}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=a0+a1x+a2x2+…+anxn(a0,a1,a2,…,an∈R)的導(dǎo)數(shù)是y′=a1+2a2x+…+nanxn-1(a1,a2,…,an∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC中,角A,B,C的對邊分別為a,b,c,a:b:c=2:3:4,則$\frac{sinA-2sinB}{sin2C}$等于(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.用三角函數(shù)線比較sinl與cosl的大小,結(jié)果是sinl>cosl.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若角α的終邊與$\frac{π}{6}$的終邊關(guān)于直線y=x對稱,且α∈(-4π,4π),則α=-$\frac{11π}{3}$,-$\frac{5π}{3}$,$\frac{π}{3}$,$\frac{7π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求數(shù)列1$\frac{1}{2}$,3$\frac{3}{4}$,5$\frac{7}{8}$,7$\frac{15}{16}$,…的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z的實部為2,虛部為1,則(2-i)z=(  )
A.4+iB.4-iC.5D.4

查看答案和解析>>

同步練習(xí)冊答案