已知向量a=(2,1),b=(x,y).

(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向量a∥b的概率;

(2)若x∈[-1,2],y∈[-1,1],求向量a,b的夾角是鈍角的概率.

 

(1) (2)

【解析】(1)設“a∥b”為事件A,由a∥b,得x=2y.

基本事件空間為Ω={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)},共包含12個基本事件;

其中A={(0,0),(2,1)},包含2個基本事件.

則P(A)=,即向量a∥b的概率為

(2)設“a,b的夾角是鈍角”為事件B,由a,b的夾角是鈍角,可得a·b<0,即2x+y<0,且x≠2y.基本事件空間為Ω={(x,y)| },

B={(x,y)| },

則由圖可知,P(B)=

即向量a,b的夾角是鈍角的概率是

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:2-12導數(shù)的應用二(解析版) 題型:選擇題

已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),當x>0時,f(x)=lnx-ax,若函數(shù)在定義域上有且僅有4個零點,則實數(shù)a的取值范圍是(  )

A.(e,+∞) B.(0,)

C.(1,) D.(-∞,)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:10-8n次獨立重復實驗與二項分布(解析版) 題型:解答題

小王參加一次比賽,比賽共設三關,第一、二關各有兩個必答題,如果每關兩個問題都答對,可進入下一關,第三關有三個問題,只要答對其中兩個問題,則闖關成功.每過一關可一次性獲得價值分別為1000元,3000元,6000元的獎品(不重復得獎),小王對三關中每個問題回答正確的概率依次為,,且每個問題回答正確與否相互獨立.

(1)求小王過第一關但未過第二關的概率;

(2)用X表示小王所獲得獎品的價值,寫出X的概率分布列,并求X的數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:10-7離散型隨機變量及分布列(解析版) 題型:填空題

某學生在參加政、史、地三門課程的學業(yè)水平考試中,取得A等級的概率分別為、、,且三門課程的成績是否取得A等級相互獨立.記ξ為該生取得A等級的課程數(shù),其分布列如表所示,則數(shù)學期望E(ξ)的值為________.

ξ

0

1

2

3

P

a

b

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:10-7離散型隨機變量及分布列(解析版) 題型:選擇題

隨機變量X的概率分布規(guī)律為P(X=n)=(n=1,2,3,4),其中a是常數(shù),則P(<X<)的值為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:10-6幾何概型(解析版) 題型:選擇題

在圓的一條直徑上,任取一點作與該直徑垂直的弦,則其弦長超過該圓的內(nèi)接等邊三角形的邊長的概率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:10-5古典概型(解析版) 題型:填空題

將號碼分別為1、2、…、9的九個小球放入一個袋中,這些小球僅號碼不同,其余完全相同,甲從袋中摸出一個球.其號碼為a,放回后,乙從此袋中再摸出一個球,其號碼為b,則使不等式a-2b+10>0成立的事件發(fā)生的概率等于________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:10-4隨機事件的概率(解析版) 題型:選擇題

有一對酷愛運動的年輕夫婦讓他們12個月大的嬰兒拼排3塊分別寫有“20”,“14”和“北京”的字塊,如果嬰兒能夠排成“2014北京”或者“北京2014”,則他們就給嬰兒獎勵.假設嬰兒能將字塊橫著正排,那么這個嬰兒能得到獎勵的概率是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:10-2排列與組合(解析版) 題型:選擇題

將7支不同的筆全部放入兩個不同的筆筒中,每個筆筒中至少放2支,則不同的放法有(  )

A.56種 B.84種 C.112種 D.28種

 

查看答案和解析>>

同步練習冊答案