若l,m,n是互不相同的空間直線(xiàn),α,β是不重合的平面,下列命題正確的是(  )
A、若α∥β,l?α,n?β,則l∥n
B、若α⊥β,l?α,則l⊥β
C、若l⊥n,m⊥n,則l∥m
D、若l⊥α,l∥β,則α⊥β
考點(diǎn):空間中直線(xiàn)與平面之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:利用空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系求解.
解答: 解:若α∥β,l?α,n?β,
則l與n平行、相交或異面,故A不正確;
若α⊥β,l?α,則l∥β或l與β相交,故B不正確;
若l⊥n,m⊥n,則l與m相交、平行或異面,故C不正確;
若l⊥α,l∥β,則由平面與平面垂直的判定定理知α⊥β,故D正確.
故選:D.
點(diǎn)評(píng):本題考查命題的真假判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是等差數(shù)列{an} (n∈N*)的前n項(xiàng)和,且S6>S7>S5,有下列四個(gè)命題:
①d<0;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項(xiàng)為S11.其中正確的命題是( 。
A、①②B、①③C、②③D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面α的一個(gè)法向量為(1,2,0),平面β的一個(gè)法向量為(2,-1,0),則平面α與平面β的位置關(guān)系是(  )
A、平行B、相交但不垂直
C、垂直D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以橢圓C:
x2
8
+
y2
5
=1的焦點(diǎn)為頂點(diǎn),以橢圓C的頂點(diǎn)為焦點(diǎn)的雙曲線(xiàn)的方程是( 。
A、
x2
8
-
y2
5
=1
B、
y2
5
-
x2
8
=1
C、
x2
3
-
y2
5
=1
D、
y2
5
-
x2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“所有9的倍數(shù)都是3的倍數(shù).某數(shù)是9的倍數(shù),故該數(shù)為3的倍數(shù),”上述推理(  )
A、完全正確
B、推理形式不正確
C、錯(cuò)誤,因?yàn)榇笮∏疤岵灰恢?/span>
D、錯(cuò)誤,因?yàn)榇笄疤徨e(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)y2=4x的焦點(diǎn)為F,M為拋物線(xiàn)上的動(dòng)點(diǎn),又已知點(diǎn)N(-1,0),則
|MN|
|MF|
的取值范圍是( 。
A、[1,2
2
]
B、[
2
,
3
]
C、[
2
,2]
D、[1,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題“自然數(shù)a,b,c中三個(gè)均為偶數(shù)”的反設(shè)( 。
A、全是奇數(shù)
B、恰有一個(gè)偶數(shù)
C、至少有一個(gè)偶數(shù)
D、至多有兩個(gè)偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:圓C過(guò)點(diǎn)A(6,0),B(1,5)且圓心在直線(xiàn)l:2x-7y+8=0上,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n+1-2,數(shù)列{bn}滿(mǎn)足bn=
1
(n+1)log2an

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案