【題目】已知點,在圓:上任取一點,的垂直平分線交于點.(如圖).
(1)求點的軌跡方程;
(2)若過點的動直線與(1)中的軌跡相交于、兩點.問:平面內是否存在異于點的定點,使得恒成立?試證明你的結論.
【答案】(1)
(2)存在,證明見解析
【解析】
(1)利用垂直平分線的性質可得,從而得到點的軌跡是以,為焦點的橢圓;
(2)先考慮當直線軸和直線軸的情況得到定點;再考慮對直線的一般情況都有點滿足題意.
(1)依題意得,,
故點的軌跡是以,為焦點的橢圓,
,,,
因此,所求的軌跡是橢圓:.
(2)當直線軸時,由得知點在軸上,可設.
當直線軸時,,,由得
,或.
因此,若存在異于點的定點滿足題意,則點的坐標為.
下面我們來證明:對任意直線均有.
當直線的斜率不存在時,由上可知,結論成立.
當直線的斜率存在時,可設直線:,,.
把代入得,
由于點在橢圓的內部,故判別式.所以
,,,
易知點關于軸的對稱點為,
而,
又,
所以,
即、、三點共線,
,
綜上知,存在異于點的定點滿足題意.
科目:高中數(shù)學 來源: 題型:
【題目】三位同學畢業(yè)后,發(fā)現(xiàn)市內一些小家電配件的批發(fā)商每天的批發(fā)零售的生意很火爆,于是他們三人決定利用所學專業(yè)進行自主創(chuàng)業(yè),專門生產這類小家電配件,并與經銷商簽訂了經銷合同,他們生產出的小家電配件,以每件元的價格全部由經銷商包銷.經市場調研,生產這類配件,每月需要投入固定成本為萬元,每生產萬件配件,還需再投入資金萬元.在月產量不足萬件時,(萬元);在月產量不小于萬件時,(萬元).已知月產量是萬件時,需要再投入的資金是萬元.
(1)試將生產這些小家電的月利潤(萬元)表示成月產量(萬件)的函數(shù);(注:月利潤月銷售收入固定成本再投入成本)
(2)月產量為多少萬件時,這三位同學生產這些配件獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①,在平行四邊形中,,,,于點,將沿折起,使,連接、,得到如圖②所示的幾何體.
(1)求證:平面平面;
(2)若點在線段上,直線與平面所成角的正切值為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據《人民網》報道,“美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動主導了地球變綠.”據統(tǒng)計,中國新增綠化面積的420/0來自于植樹造林,下表是中國十個地區(qū)在2017年植樹造林的相關數(shù)據.(造林總面積為人工造林、飛播造林、新封山育林、退化林修復、人工更新的面積之和)單位:公頃
按造林方式分 | ||||||
地區(qū) | 造林總面積 | 人工造林 | 飛播造林 | 新封山育林 | 退化林修復 | 人工更新 |
內蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 22417 | 15376 | 133 |
重慶 | 226333 | 100600 | 62400 | 63333 | ||
陜西 | 297642 | 184108 | 33602 | 63865 | 16067 | |
甘肅 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
寧夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012 | 4000 | 3999 | 1053 |
(Ⅰ)請根據上述數(shù)據,分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);
(Ⅱ)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)人工造林面積與造林總面積的比值不足50%的概率是多少?
(Ⅲ)從上表新封山育林面積超過十萬公頃的地區(qū)中,任選兩個地區(qū),求至少有一個地區(qū)退化林修復面積超過五萬公頃的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的焦點為,過點作垂直于軸的直線與拋物線交于,兩點,且以線段為直徑的圓過點.
(1)求拋物線的方程;
(2)若直線與拋物線交于,兩點,點為曲線:上的動點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把一個均勻的正方體骰子拋擲兩次,觀察出現(xiàn)的點數(shù),記第一次出現(xiàn)的點數(shù)為,第二次出現(xiàn)的點數(shù)為,設直線:,直線:.
(1)求直線和直線沒有交點的概率;
(2)求直線和直線的交點在第一象限的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的焦距為,點在橢圓上,且的最小值是(為坐標原點).
(1)求橢圓的標準方程.
(2)已知動直線與圓:相切,且與橢圓交于,兩點.是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓過點、.
(1)求橢圓的方程;
(2)、為橢圓的左、右焦點,直線過與橢圓交于、兩點,求△面積的最大值;
(3)求動點的軌跡方程,使得過點存在兩條互相垂直的直線、,且都與橢圓只有一個公共點.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com