【題目】已知的三個(gè)頂點(diǎn)落在半徑為的球的表面上,三角形有一個(gè)角為且其對(duì)邊長(zhǎng)為3,球心所在的平面的距離恰好等于半徑的一半,點(diǎn)為球面上任意一點(diǎn),則三棱錐的體積的最大值為( )

A. B. C. D.

【答案】C

【解析】

設(shè)外接圓的圓心為,則平面,所以,設(shè)外接圓的半徑為,,利用正弦定理即可求得:,再利用截面圓的性質(zhì)可列方程:,即可求得,即可求得點(diǎn)到平面的距離的最大值為,利用余弦定理及基本不等式即可求得:,再利用錐體體積公式計(jì)算即可得解。

設(shè)外接圓的圓心為,則平面,所以

設(shè)外接圓的半徑為,,

由正弦定理可得:,解得:

由球的截面圓性質(zhì)可得:,解得:

所以點(diǎn)到平面的距離的最大值為:.

中,由余弦定理可得:

當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以.

所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.

當(dāng)三棱錐的底面面積最大,高最大時(shí),其體積最大.

所以三棱錐的體積的最大值為

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(Ⅰ)若有極小值且極小值為0 ,求的值;

(Ⅱ)當(dāng)時(shí),, 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)與雙曲線(xiàn);

1)當(dāng)為何值時(shí),直線(xiàn)與雙曲線(xiàn)有一個(gè)交點(diǎn);

2)直線(xiàn)與雙曲線(xiàn)交于、兩點(diǎn)且以為直徑的圓過(guò)坐標(biāo)原點(diǎn),求值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系.已知點(diǎn)軌跡的參數(shù)方程為為參數(shù)),點(diǎn)在曲線(xiàn)上.

(1)求點(diǎn)軌跡的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的三個(gè)頂點(diǎn)落在半徑為的球的表面上,三角形有一個(gè)角為且其對(duì)邊長(zhǎng)為3,球心所在的平面的距離恰好等于半徑的一半,點(diǎn)為球面上任意一點(diǎn),則三棱錐的體積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若,則稱(chēng)的“不動(dòng)點(diǎn)”,若,則稱(chēng)的“穩(wěn)定點(diǎn)”,函數(shù)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為,即,,那么,

(1)求函數(shù)的“穩(wěn)定點(diǎn)”;

(2)求證:

(3)若,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)單調(diào)函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,如果單調(diào)函數(shù)使得函數(shù)的值域也是,則稱(chēng)函數(shù)是函數(shù)的一個(gè)保值域函數(shù).已知定義域?yàn)?/span>的函數(shù),函數(shù)互為反函數(shù),且的一個(gè)保值域函數(shù)”,的一個(gè)保值域函數(shù),則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且, .

求證:(1)直線(xiàn)DE平面A1C1F;

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)滿(mǎn)足不等式

命題q:關(guān)于不等式對(duì)任意的恒成立.

1)若命題為真命題,求實(shí)數(shù)的取值范圍;

2)若“為假命題,為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案