精英家教網 > 高中數學 > 題目詳情
17.sin410°sin550°-sin680°cos370°=(  )
A.$-\frac{1}{2}$B.-cos40°C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

分析 由條件利用誘導公式、兩角和差的三角公式,求得要求式子的值.

解答 解:sin410°sin550°-sin680°cos370°=-sin50°sin10°+cos50°cos10°=cos60°=$\frac{1}{2}$,
故選:D

點評 本題主要考查誘導公式、兩角和差的三角公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

10.如圖,在棱長為2的正方體中,直線AC1和B1C的夾角是90°  

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.在△ABC中,a,b,c分別為角A,B,C所對的邊,若bcosC+ccosB=asinA,則△ABC的形狀為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.已知x,y滿足不等式組$\left\{{\begin{array}{l}{y≤x}\\{x+y≥2}\\{x≤2}\end{array}}\right.$,則z=2x+y的最大值與最小值之和為9.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.若直線l的方向向量為$\overrightarrow{a}$,平面α的法向量為$\overrightarrow{n}$,則滿足l∥α的向量$\overrightarrow{a}$與$\overrightarrow{n}$可能為(  )
A.$\overrightarrow{a}$=(1,3,5),$\overrightarrow{n}$=(1,0,1)B.$\overrightarrow{a}$=(1,0,0),$\overrightarrow{n}$=(-2,0,0)
C.$\overrightarrow{a}$=(1,-1,3),$\overrightarrow{n}$=(0,3,1)D.$\overrightarrow{a}$=(0,2,1),$\overrightarrow{n}$=(-1,0,-1)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知p:直線y=(2m+1)x+m-2的圖象不經過第二象限,q:方程x2+$\frac{{y}^{2}}{1-m}$=1表示焦點在x軸上的橢圓,若(¬p)∨q為假命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.下列函數中既是奇函數,又在定義域上為增函數的是(  )
A.f(x)=x+1B.$f(x)=-\frac{1}{x}$C.f(x)=x2D.f(x)=x3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.在等差數列{an}中,公差d=2,Sn是其前n項和,若S20=60,則S21的值是( 。
A.62B.64C.84D.100

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.下列說法:
①扇形的周長為8cm,面積為4cm2,則扇形的圓心角弧度數為2rad;
②函數y=cos($\frac{3}{2}$x+$\frac{π}{2}$)是奇函數
③若α是第三象限角,則y=$\frac{|sin\frac{α}{2}|}{sin\frac{α}{2}}$+$\frac{|cos\frac{α}{2}|}{cos\frac{α}{2}}$的值為0或-2;
④若sinα=sinβ,則α與β的終邊相同;
⑤y=2sin$\frac{3}{2}$x在區(qū)間[-$\frac{π}{3}$,$\frac{π}{2}$]上的最小值是-2,最大值是$\sqrt{2}$;
⑥若α、β是第一象限角且α<β,則tanα<tanβ;
其中正確的是①②.(寫出所有正確答案)

查看答案和解析>>

同步練習冊答案