14.已知函數(shù)$f(x)={log_9}({9^x}+1)-\frac{1}{2}x$的圖象與直線y=$\frac{1}{2}$x+b沒有交點(diǎn),則b的取值范圍是( 。
A.(-∞,0]B.(-∞,1]C.(0,1)D.(1,+∞)

分析 函數(shù)y=f(x)的圖象與y=$\frac{1}{2}$x+b直沒有交點(diǎn),方程$f(x)={log_9}({9^x}+1)-\frac{1}{2}x$=$\frac{1}{2}$x+b無解,從而方程log9(9x+1)-x=b無解.令g(x)=log9(9x+1)-x,則函數(shù)y=g(x)的圖象與直線y=b無交點(diǎn).可以驗(yàn)證g(x)為減函數(shù),從而得到g(x)>0,進(jìn)而可求實(shí)數(shù)b的取值范圍.

解答 解:由題意知方程$f(x)={log_9}({9^x}+1)-\frac{1}{2}x$=$\frac{1}{2}$x+b沒有解,即方程log9(9x+1)-x=b無解.
令g(x)=log9(9x+1)-x,則函數(shù)y=g(x)的圖象與直線y=b無交點(diǎn).
∵$g(x)=lo{g}_{9}({9}^{x}+1)-x=lo{g}_{9}(1+\frac{1}{{9}^{x}})$
任取x1、x2∈R,且x1<x2,則0<${9}^{{x}_{1}}$<${9}^{{x}_{2}}$,從而$\frac{1}{{9}^{{x}_{1}}}>\frac{1}{{9}^{{x}_{2}}}$,
可知g(x1)>g(x2
∴g(x)在(-∞,+∞)是單調(diào)減函數(shù).
∵$1+\frac{1}{{9}^{x}}>1$,
∴$g(x)=lo{g}_{9}({9}^{x}+1)-x=lo{g}_{9}(1+\frac{1}{{9}^{x}})$>0,
函數(shù)y=g(x)的圖象與直線y=b無交點(diǎn),只需b≤0即可.
∴b的取值范圍是(-∞,0].
故選:A

點(diǎn)評 本題重點(diǎn)考查函數(shù)的性質(zhì),考查函數(shù)與方程的關(guān)系,解題的關(guān)鍵是正確運(yùn)用偶函數(shù)的定義,合理將問題進(jìn)行等價轉(zhuǎn)化

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,A=30°,AB=3,AC=2$\sqrt{3}$,且$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,則$\overrightarrow{AC}$•$\overrightarrow{CD}$等于( 。
A.18B.9C.-8D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.當(dāng)$\frac{2}{3}$<m<1時,復(fù)數(shù)z=(3m-2)+(m-1)i在復(fù)平面上對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且f′(x)≠0.試證存在ξ,η∈(a,b),使得$\frac{f′(ξ)}{f′(η)}=\frac{{e}^-{e}^{a}}{b-a}•{e}^{-η}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=x2-1,則使f(x)>0的x的取值范圍x>1或-1<x<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列{an}中,Sn為其前n項和,a2+a6=6,S3=5.
(I)求數(shù)列{an}的通項公式;
(II)令${b_n}=\frac{1}{{{a_{n-1}}{a_n}}}({n≥2}),{b_1}=3,{T_n}={b_1}+{b_2}+…+{b_n}$,若Tn<m對一切n∈N*都成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知三棱柱ABC-A1B1C1的側(cè)棱與底面ABC垂直,且AA1=4,AC=BC=2,∠ACB=90°.
(1)證明:AC⊥平面BCC1B1
(2)求直線BB1與平面AB1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)為A,拋物線C:y2=8ax的焦點(diǎn)為F,若在E的漸近線上存在點(diǎn)P使得PA⊥FP,則E的離心率的取值范圍是( 。
A.(1,2)B.(1,$\frac{3\sqrt{2}}{4}$]C.(2,+∞)D.[$\frac{3\sqrt{2}}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=mlnx+nx在點(diǎn)(1.f(1))處的切線與直線x+y-2=0平行,且f(1)=-2,其中m,n∈R.
(Ⅰ)求m,n的值,并求出函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)$g(x)=\frac{1}{t}(-{x^2}+2x)$,對于正實(shí)數(shù)t,若?x0∈[1,e],使得f(x0)+x0≥g(x0)成立,求t的最大值.

查看答案和解析>>

同步練習(xí)冊答案