分析 (1)由已知得CC1⊥平面ABC,從而AC⊥CC1,由∠ACB=90°,得AC⊥BC,由此能證明AC⊥平面BCC1B1.
(2)過B作BG⊥B1C,從而AC⊥BC,由線面垂直得CC1⊥AC,從而AC⊥面B1BCC1,進而∠BB1G是直線BB1與平面AB1C所成角,由此能求出直線BB1與平面AB1C所成角的余弦值.
解答 (1)證明:∵三棱柱ABC-A1B1C1的側(cè)棱與底面ABC垂直,
∴CC1⊥平面ABC,又AC?平面ABC,∴AC⊥CC1,
∵∠ACB=90°,∴AC⊥BC,
又BC∩CC1=C,∴AC⊥平面BCC1B1.
(2)解:過B作BG⊥B1C,
∵∠ACB=90°,∴AC⊥BC,
∵CC1⊥面ABC,∴CC1⊥AC,
∴AC⊥面B1BCC1,∴AC⊥BG,
∵BG⊥B1C,∴BG⊥面AB1C,
∴∠BB1G是直線BB1與平面AB1C所成角,∴cos∠BB1G=$\frac{B{B}_{1}}{{B}_{1}C}$=$\frac{2\sqrt{5}}{5}$.
∴直線BB1與平面AB1C所成角的余弦值為$\frac{2\sqrt{5}}{5}$.
點評 本題考查線面垂直的證明,考查直線與平面所成角的求法,是中檔題,
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0] | B. | (-∞,1] | C. | (0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{16}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{11}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,0) | C. | (-1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com