13.已知數(shù)列{an}滿足a1=16,an+1-an=2n(n∈N*),則$\frac{a_n}{n}$的最小值為7.

分析 a1=16,an+1-an=2n(n∈N*),利用“累加求和”、等差數(shù)列的求和公式、基本不等式的性質(zhì)即可得出.

解答 解:∵a1=16,an+1-an=2n(n∈N*),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+16
=2×$\frac{(n-1)n}{2}$+16
=n2-n+16.
∴$\frac{a_n}{n}$=$\frac{{n}^{2}-n+16}{n}$=n+$\frac{16}{n}$-1≥2×4-1=7.
故答案為:7.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式及其性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=sin2ωx+2$\sqrt{3}$cos2ωx,(0<ω<2),且f(x-$\frac{π}{6}$)=f(x+$\frac{π}{2}$).
(Ⅰ)試求ω的值;
(Ⅱ)討論函數(shù)g(x)=2-|f(x)-$\sqrt{3}$|-kx(k∈R)在x∈[0,$\frac{7π}{18}$]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某社區(qū)有800戶家庭,其中高收入家庭200戶,中等收入家庭480戶,低收入家庭120戶,為了調(diào)查社會(huì)購(gòu)買力的某項(xiàng)指標(biāo),要從中抽取一個(gè)容量為100戶的樣本,記作①;某學(xué)校高一年級(jí)有12名音樂特長(zhǎng)生,要從中選出3名調(diào)查學(xué)習(xí)訓(xùn)練情況,記作②.那么完成上述兩項(xiàng)調(diào)查應(yīng)采用的抽樣方法是( 。
A.①用簡(jiǎn)單隨機(jī)抽樣  ②用系統(tǒng)抽樣B.①用分層抽樣  ②用簡(jiǎn)單隨機(jī)抽樣
C.①用系統(tǒng)抽樣  ②用分層抽樣D.①用分層抽樣  ②用系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知關(guān)于x的方程-2x2+bx+c=0,若b、c∈{0,1,2,3,4},記“該方程有實(shí)數(shù)根x1、x2且滿足-1≤x1≤x2≤2”為事件A,則事件A發(fā)生的概率為$\frac{16}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若$\lim_{n→∞}\frac{{(a-2){n^2}+bn+3}}{n+1}$=4,則a+b=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在10支鉛筆中,有8支正品,2支次品,從中任取出兩支,則在第一次抽的是次品的條件下,第二次抽的是正品的概率是$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=$\frac{1}{{\sqrt{{x^2}-x-2}}}$的定義域?yàn)椋?∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列給出的賦值語句中正確的是( 。
A.4=MB.M=-MC.B=A=3D.x+y=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知變量x,y的取值如表:
  x0134
  Y2.24.34.86.7
利用散點(diǎn)圖觀察,y與x線性相關(guān),其回歸直線方程為$\stackrel{∧}{y}$=0.95x+a,則a的值為( 。
A.0B.2.2C.2.6D.3.25

查看答案和解析>>

同步練習(xí)冊(cè)答案