【題目】如圖,在三棱錐P—ABC中,△PBC為等邊三角形,點O為BC的中點,AC⊥PB,平面PBC⊥平面ABC.

(1)求直線PB和平面ABC所成的角的大。

(2)求證:平面PAC⊥平面PBC;

(3)已知E為PO的中點,F(xiàn)是AB上的點,AF=AB.若EF∥平面PAC,求的值.

【答案】1;(2)證明見解析;(3

【解析】

1)先找到直線PB與平面ABC所成的角為,再求其大小;(2)先證明,

再證明平面PAC⊥平面PBC;(3)取CO的中點G,連接EG,過點GFG||AC,再求出的值.

1)因為平面PBC⊥平面ABC,PO⊥BC, 平面PBC∩平面ABC=BC,,

所以PO⊥平面ABC,

所以直線PB與平面ABC所成的角為,

因為,

所以直線PB與平面ABC所成的角為.

(2)因為PO⊥平面ABC,

所以,

因為ACPB,

所以AC⊥平面PBC,

因為平面PAC,

所以平面PAC⊥平面PBC.

(3)

CO的中點G,連接EG,過點GFG||AC,

由題得EG||PC,所以EG||平面APC,

因為FG||AC,所以FG||平面PAC,

EG,FG平面EFO,EGFG=G,

所以平面EFO||平面PAC,

因為EF平面EFO,

所以EF||平面PAC.

此時AF=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ ,現(xiàn)有一組數(shù)據(jù),繪制得到莖葉圖,且莖葉圖中的數(shù)據(jù)的平均數(shù)為2.(莖葉圖中的數(shù)據(jù)均為小數(shù),其中莖為整數(shù)部分,葉為小數(shù)部分)
(Ⅰ)求a的值;
(Ⅱ)現(xiàn)從莖葉圖小于3的數(shù)據(jù)中任取2個數(shù)據(jù)分別替換m的值,求恰有1個數(shù)據(jù)使得函數(shù)f(x)沒有零點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】Sn為數(shù)列{an}的前n項和,已知,對任意nN*,都有2Sn=(n+1an

1)求數(shù)列{an}的通項公式;

2)若數(shù)列的前項和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn= (an﹣1),數(shù)列{bn}滿足bn+2=2bn+1﹣bn , 且b6=a3 , b60=a5 , 其中n∈N*. (Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=(﹣1)nbnbn+1 , 求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣m(lnx+ )(m為實數(shù),e=2.71828…是自然對數(shù)的底數(shù)). (Ⅰ)當m>1時,討論f(x)的單調性;
(Ⅱ)若g(x)=x2f′(x)﹣xex在( ,3)內有兩個零點,求實數(shù)m的取值范圍.
(Ⅲ)當m=1時,證明:xf(x)+xlnx+1>x+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示:

(I)求的解析式及對稱中心坐標;

(Ⅱ)將的圖象向右平移個單位,再將橫坐標伸長到原來的2倍,縱坐標不變,最后將圖象向上平移1個單位,得到函數(shù)的圖象,求函數(shù)上的單調區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三點,,曲線上任意一點滿足

的方程;

已知點,動點 在曲線C上,曲線C在Q處的切線與直線PA,PB都相交,交點分別為D,E,求的面積的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象與函數(shù)的圖象有三個不同的交點、、,其中.給出下列四個結論: ①;②;③;④.其中,正確結論的個數(shù)有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某學校的800名男生中隨機抽取50名測量其身高,被測學生身高全部介于之間,將測量結果按如下方式分組:第一組,第二組,…,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4.

(1)請補全頻率分布直方圖并求第七組的頻率;

(2)估計該校的800名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);

(3)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為,事件,事件,求

查看答案和解析>>

同步練習冊答案