設(shè)函數(shù)f(x)=cos(2x+φ)+sin(2x+φ) ,且其圖像關(guān)于直線x=0對稱,則( )
A.y=f(x)的最小正周期為π,且在上為增函數(shù)
B.y=f(x)的最小正周期為π,且在上為減函數(shù)
C.y=f(x)的最小正周期為,且在上為增函數(shù)
D.y=f(x)的最小正周期為,且在上為減函數(shù)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)與g(x)是定義在R上的兩個可導(dǎo)函數(shù),若f(x),g(x)滿足f′(x)=g′(x),則f(x)與g(x)滿足( )
A.f(x)=g(x) B.f(x)=g(x)=0
C.f(x)-g(x)為常數(shù)函數(shù) D.f(x)+g(x)為常數(shù)函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=·ex-f(0)·x+x2(e是自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的解析式和單調(diào)區(qū)間;
(2)若函數(shù)g(x)=x2+a與函數(shù)f(x)的圖像在區(qū)間[-1,2]上恰有兩個不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知α為銳角,且2tan(π-α)-3cos+5=0,tan(π+α)+6sin(π+β)=1,則sin α的值是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=sin x+cos x,x∈R.
(1)求的值;
(2)試寫出一個函數(shù)g(x),使得g(x)f(x)=cos 2x,并求g(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
.函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0)的部分圖像如圖所示,則f(0)的值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若tan α=lg(10a),tan β=lg,且α+β=,則實(shí)數(shù)a的值為( )
A.1 B.
C.1或 D.1或10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某校為了解高一期末數(shù)學(xué)考試的情況,從
高一的所有學(xué)生數(shù)學(xué)試卷中隨機(jī)抽取份
試卷進(jìn)行成績分析,得到數(shù)學(xué)成績頻率分
布直方圖(如圖所示),其中成績在
的學(xué)生人數(shù)為6.
(Ⅰ)估計(jì)所抽取的數(shù)學(xué)成績的眾數(shù);
(Ⅱ)用分層抽樣的方法在成績?yōu)?/p>
和這兩組中共抽取5個學(xué)生,并從這5個學(xué)生中任取2人進(jìn)行點(diǎn)評,求分?jǐn)?shù)在恰有1人的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com