【題目】已知橢圓的一個焦點坐標(biāo)為,一條斜率為的直線分別交軸于點,交橢圓于點,且點三等分.
(1)求該橢圓的方程;
(2)若是第一象限內(nèi)橢圓上的點,其橫坐標(biāo)為2,過點的兩條不同的直線分別交橢圓于點,且直線的斜率之積,求證:直線恒過定點,并求出定點的坐標(biāo).
【答案】(1);(2)證明見解析,定點.
【解析】
(1)分別設(shè)出點的坐標(biāo),用相關(guān)參數(shù)表示的坐標(biāo),代入橢圓方程,求出的值;
(2)設(shè)出直線的方程,利用條件求出相關(guān)參數(shù)關(guān)系,即可求得定點坐標(biāo).
(1)不妨設(shè),則,
即,
則由題意知,或,
分別代入橢圓的方程得消去,整理得,
又,所以.
故該橢圓的方程為.
(2)由題意得,直線的斜率存在,且不為0,設(shè)直線的方程為,
代入橢圓的方程整理得,.
設(shè),由根與系數(shù)的關(guān)系得,
由得,即,
所以,
即,
整理得,.
由求根公式得,,
故或.
若,則直線的方程為,
直線過點,即點,舍去.
若,則直線的方程為,恒過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的每條棱的長度都相等,,分別是棱,的中點,是棱上一點,且平面.
(1)證明:平面.
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵人機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期. 一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) |
(1)求這1000名患者的潛伏期的樣本平均數(shù)x (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表) ;
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期天 | 潛伏期天 | 總計 | |
歲以上(含歲) | |||
歲以下 | |||
總計 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?
附:
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)在假期進行社會實踐活動,對歲的人群隨機抽取n人進行了一次當(dāng)前投資生活方式——“房地產(chǎn)投資”的調(diào)查,得到如下統(tǒng)計和各年齡段人數(shù)頻率分布直方圖:
(Ⅰ)求,,的值;
(Ⅱ)從年齡在歲的“房地產(chǎn)投資”人群中采取分層抽樣法抽取9人參加投資管理學(xué)習(xí)活動,其中選取3人作為代表發(fā)言,記選取的3名代表中年齡在歲的人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)在所給的坐標(biāo)紙上作出函數(shù)的圖像(不要求寫出作圖過程);
(2)令, 求函數(shù)的定義域及不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,平面平面PAD,E是的中點,F是DC上一點,G是PC上一點,且,.
(1)求證:平面平面PAB;
(2)若,,求直線PB與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若的圖象上相鄰兩條對稱軸的距離為,圖象過點.
(1)求的表達式和的遞增區(qū)間;
(2)將函數(shù)的圖象向右平移個單位長度,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象.若函數(shù)在區(qū)間上有且只有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l:x﹣ty+1=0(t>0)和拋物線C:y2=4x相交于不同兩點A、B,設(shè)AB的中點為M,拋物線C的焦點為F,以MF為直徑的圓與直線l相交另一點為N,且滿足|MN||NF|,則直線l的方程為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com