【題目】如圖,某城市有一塊半徑為40m的半圓形O為圓心,AB為直徑綠化區(qū)域,現(xiàn)計(jì)劃對(duì)其進(jìn)行改建.在AB的延長(zhǎng)線(xiàn)上取點(diǎn)D,使OD=80m,在半圓上選定一點(diǎn)C,改建后的綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為S m2. 設(shè)∠AOC=x rad.

(1)寫(xiě)出S關(guān)于x的函數(shù)關(guān)系式S(x),并指出x的取值范圍;

(2)張強(qiáng)同學(xué)說(shuō):當(dāng)∠AOC=時(shí),改建后的綠化區(qū)域面積S最大.張強(qiáng)同學(xué)的說(shuō)法正確嗎?若不正確,請(qǐng)求出改建后的綠化區(qū)域面積S最大值.

【答案】1S:(2)

【解析】試題分析:1)求出扇形區(qū)域AOC、三角形區(qū)域COD的面積,即可求出S關(guān)于x的函數(shù)關(guān)系式,并指出x的取值范圍;(2)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可得出結(jié)論.

試題解析:

(1)因?yàn)樯刃?/span>AOC的半徑為40m,∠AOC=x rad

中, , ,

所以

從而

(2)張強(qiáng)同學(xué)的說(shuō)法不正確.

理由如下:

(1)知, .

.

,解得.

從而當(dāng)時(shí), ;當(dāng)時(shí), .

因此在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.

所以當(dāng)時(shí),S取得最大值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記f(x)=|log2(ax)|在x∈[ ,8]時(shí)的最大值為g(a),則g(a)的最小值為(
A.
B.2
C.
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,按其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組后得到如右部分頻率分布直方圖,觀(guān)察圖中的信息,

回答下列問(wèn)題:

(1)補(bǔ)全頻率分布直方圖;并估計(jì)本次考試的數(shù)學(xué)平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績(jī)中抽取一個(gè)容量為6的樣本,再?gòu)倪@6個(gè)樣本中任取2人成績(jī),求至多有1人成績(jī)?cè)诜謹(jǐn)?shù)段內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司今年年初用25萬(wàn)元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬(wàn)元.該公司第n年需要付出設(shè)備的維修和工人工資等費(fèi)用an的信息如圖.

(1)求an;
(2)引進(jìn)這種設(shè)備后,第幾年后該公司開(kāi)始獲利;
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個(gè)圖形,其中能表示從集合M到集合N的函數(shù)關(guān)系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓 和圓 .

1)若直線(xiàn)過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為,求直線(xiàn)的方程;

2)設(shè)為平面直角坐標(biāo)系上的點(diǎn),滿(mǎn)足:存在過(guò)點(diǎn)的無(wú)窮多對(duì)相互垂直的直線(xiàn),它們分別與圓相交,且直線(xiàn)被圓截得的弦長(zhǎng)與直線(xiàn)被圓截得的弦長(zhǎng)相等,試求所有滿(mǎn)足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x/攝氏度

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線(xiàn)性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;

(Ⅱ)若選取的是12月1日與12月5日的2組數(shù)據(jù),請(qǐng)根據(jù)12月2日至4日的數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程,由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,試問(wèn)(2)中所得的線(xiàn)性回歸方程是否可靠?

附:參考格式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx﹣x2)+f(x﹣1)<0對(duì)一切x∈R恒成立的實(shí)數(shù)k的取值范圍;
(3)若函數(shù)f(x)的圖象過(guò)點(diǎn)(1, ),是否存在正數(shù)m,且m≠1使函數(shù)g(x)=logm[a2x+a2x﹣mf(x)]在[1,log23]上的最大值為0,若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案