【題目】已知直線與平面,,下列命題:

①若平行內的一條直線,則;②若垂直內的兩條直線,則;③若,則;④若mα,lβ,則;⑤若,且,則;⑥若,,,則;其中正確的命題為______________(填寫所有正確命題的編號).

【答案】③⑥

【解析】

根據(jù)空間中線線,線面,面面的位置關系,逐個進行判斷即可得到結果.

l平行α內的一條直線,則lαlα,因此不正確;

l垂直α內的兩條直線,則lα不一定垂直,只有當l垂直α內的兩條相交直線才可得到線面垂直,因此不正確;

lα,lβαβm,利用線面平行的性質與判定定理可得:lm,因此正確;

mα,lβlm,則αβ不一定垂直,可能平行,因此不正確;

mα,lα,且mβ,lβ,則αβ不一定平行,只有當直線m和直線l相交時才能得到面面平行,因此不正確;

αβ,αγlβγm,利用面面平行的性質定理可得:lm,因此正確.

綜上只有③⑥正確.

故答案為:③⑥

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】今年4月23日我市正式宣布實施“3+1+2”的高考新方案,“3”是指必考的語文、數(shù)學、外語三門學科,“1”是指在物理和歷史中必選一科,“2”是指在化學、生物、政治、地理四科中任選兩科.為了解我校高一學生在物理和歷史中的選科意愿情況,進行了一次模擬選科. 已知我校高一參與物理和歷史選科的有1800名學生,其中男生1000人,女生800人. 按分層抽樣的方法從中抽取了36個樣本,統(tǒng)計知其中有17個男生選物理,6個女生選歷史.

(I)根據(jù)所抽取的樣本數(shù)據(jù),填寫答題卷中的列聯(lián)表. 并根據(jù)統(tǒng)計量判斷能否有的把握認為選擇物理還是歷史與性別有關?

(II)在樣本里選歷史的人中任選4人,記選出4人中男生有人,女生有人,求隨機變量 的分布列和數(shù)學期望.(的計算公式見下),臨界值表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合

1)若,求實數(shù)a的取值范圍;

2)若,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之數(shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學史上第一道數(shù)列題其規(guī)律是:偶數(shù)項是序號平方再除以2,奇數(shù)項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項而設計的,那么在兩個判斷框中,可以先后填入( )

A. 是偶數(shù)?,? B. 是奇數(shù)?,?

C. 是偶數(shù)?, ? D. 是奇數(shù)?,?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐的三條側棱兩兩垂直,,,分別是棱的中點.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線截圓所得的弦長為.直線的方程為

(1)求圓的方程;

(2)若直線過定點,點在圓上,且為線段的中點,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二年組組了一次專題培訓,從參加考試的學生中出名學生,將其成(均為整數(shù))分成為,,,,分為組,得到如圖所示的率分布直方圖:

(1)求分數(shù)值不低于分的人數(shù);

(2)計這次考試的平均數(shù)和中位數(shù)(保留兩位小數(shù));

(3)已知分數(shù)在內的男性與女性的比為,為提高他們的成績,現(xiàn)從分數(shù)在的人中隨機抽取人進行補課,求這人中只有一位男性的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的零點;

2)令,時,求函數(shù)的單調區(qū)間:

3)在(2)條件下,存在實數(shù),使得函數(shù)有三個零點,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】英語老師要求學生從星期一到星期四每天學習3個英語單詞:每周五對一周內所學單詞隨機抽取若干個進行檢測(一周所學的單詞每個被抽到的可能性相同)

(1)英語老師隨機抽了個單詞進行檢測,求至少有個是后兩天學習過的單詞的概率;

(2)某學生對后兩天所學過的單詞每個能默寫對的概率為,對前兩天所學過的單詞每個能默寫對的概率為,若老師從后三天所學單詞中各抽取一個進行檢測,求該學生能默寫對的單詞的個數(shù)的分布列和期望。

查看答案和解析>>

同步練習冊答案