4.在△ABC中,角A,B,C所對的邊分別是a,b,c,若sinC+sin(B-A)=2sin2A,且 c=2,$∠C=\frac{π}{3}$,則△ABC的面積為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{5\sqrt{3}}}{3}$

分析 由已知及三角形內(nèi)角和定理兩角和的正弦公式,sin(2A-$\frac{π}{6}$)=$\frac{1}{2}$,根據(jù)角的范圍求出得A=$\frac{π}{6}$或$\frac{π}{2}$,分類討論,分別求出直角三角形邊長,利用三角形面積公式即可得解.

解答 解:∵sinC+sin(B-A)=2sin2A,C=$\frac{π}{3}$,
∴$\frac{\sqrt{3}}{2}$+sin($\frac{2π}{3}$-2A)=$\frac{\sqrt{3}}{2}$+sin$\frac{2π}{3}$cos2A-cos$\frac{2π}{3}$sin2A=2sin2A,
∴$\frac{3}{2}$sin2A-$\frac{\sqrt{3}}{2}$cos2A=$\frac{\sqrt{3}}{2}$,
∴$\frac{\sqrt{3}}{2}$sin2A-$\frac{1}{2}$cos2A=$\frac{1}{2}$,
∴sin(2A-$\frac{π}{6}$)=$\frac{1}{2}$
∵0<A<$\frac{2π}{3}$,
∴-$\frac{π}{6}$<2A-$\frac{π}{6}$<$\frac{7π}{6}$,
∴2A-$\frac{π}{6}$=$\frac{π}{6}$或2A-$\frac{π}{6}$=$\frac{5π}{6}$,
解得A=$\frac{π}{6}$或$\frac{π}{2}$
當A=$\frac{π}{6}$時,B=$\frac{π}{2}$,
∵c=2,
∴a=$\frac{2\sqrt{3}}{3}$,
∴S△ABC=$\frac{1}{2}$ac=$\frac{2\sqrt{3}}{3}$,
當A=$\frac{π}{2}$時,B=$\frac{π}{6}$,
∵c=2,
∴b=$\frac{2\sqrt{3}}{3}$,
∴S△ABC=$\frac{1}{2}$bc=$\frac{2\sqrt{3}}{3}$,
綜上所述△ABC的面積為$\frac{2\sqrt{3}}{3}$,
故選:A.

點評 本題主要考查了三角形內(nèi)角和定理,兩角和差的正弦公式,三角形面積公式在解三角形中的綜合應(yīng)用,熟練掌握相關(guān)公式及定理是解題的關(guān)鍵,屬于基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項和為Sn,若a2=4,S4=22,an=28,則n=( 。
A.3B.7C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=lnx-x+1.
(1)討論f(x)的單調(diào)性;
(2)證明當x∈(1,+∞)時,lnx<x-1<xlnx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在△ABC中,A=30°,AB=2,且△ABC的面積為$\sqrt{3}$,則△ABC外接圓的半徑為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=$\frac{1}{x}$在[2,6]上的平均變化率為-$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在等差數(shù)列{an}中,a5=9,且2a3=a2+6,則a1等于( 。
A.-3B.-2C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.$\frac{1}{(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i)^{4}}$=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若復數(shù)z=(m2-9)+(m2+2m-3)i是純虛數(shù),其中m∈R,則|z|=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知α為鈍角,sinα=$\frac{3}{4}$,則cos($\frac{π}{2}$-α)=$\frac{3}{4}$.

查看答案和解析>>

同步練習冊答案