分析 由$\frac{π}{2}$<2<3<π<4<$\frac{3π}{2}$,得cos2<0,sin3>0,tan4>0,由tan4>tan$\frac{5π}{4}$,得tan4>1,由此能比較a,b,c的大。
解答 解:∵π≈3.14,∴$\frac{π}{2}$<2<3<π<4<$\frac{3π}{2}$,
∴cos2<0,sin3>0,tan4>0
∵4>$\frac{5π}{4}$,∴tan4>tan$\frac{5π}{4}$,∴tan4>1,
∵sin3<1,∴cos2<sin3<tan4,
∴-tan4<-sin3<cos2,
∴c<b<a.
故答案為:c<b<a.
點評 本題考查三個數(shù)的大小的求法,是基礎題,解題時要認真審題,注意三角函數(shù)的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-$\frac{{\sqrt{6}}}{3}$),($\frac{{\sqrt{6}}}{3}$,+∞) | B. | (-$\sqrt{2}$,-$\frac{{\sqrt{6}}}{3}$),($\sqrt{2}$,+∞) | C. | (-$\sqrt{2}$,-$\frac{{\sqrt{6}}}{3}$),($\frac{{\sqrt{6}}}{3}$,+∞) | D. | (-$\frac{{\sqrt{6}}}{3}$,$\frac{{\sqrt{6}}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x=-1 | B. | x=1 | C. | $x=\frac{1}{2}$ | D. | $x=-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com