12.設(shè)數(shù)列{an}的前n項和為Sn.若Sn=2an-n,則$\frac{2}{{a}_{1}{a}_{2}}$+$\frac{4}{a{{\;}_{2}a}_{3}}$+$\frac{8}{{a}_{3}{a}_{4}}$+$\frac{16}{{a}_{4}{a}_{5}}$=$\frac{30}{31}$.

分析 Sn=2an-n,n≥2時,an=Sn-Sn-1,化為:an+1=2(an-1+1),n=1時,a1=2a1-1,解得a1.利用等比數(shù)列的通項公式可得an=2n-1,于是$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$.利用裂項求和方法即可得出.

解答 解:∵Sn=2an-n,∴n≥2時,an=Sn-Sn-1=2an-n-[2an-1-(n-1)],∴an=2an-1+1,化為:an+1=2(an-1+1),
n=1時,a1=2a1-1,解得a1=1.
∴數(shù)列{an+1}是等比數(shù)列,首項為2,公比為2.
∴an+1=2n,即an=2n-1,
∴$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$.
∴$\frac{2}{{a}_{1}{a}_{2}}$+$\frac{4}{a{{\;}_{2}a}_{3}}$+$\frac{8}{{a}_{3}{a}_{4}}$+$\frac{16}{{a}_{4}{a}_{5}}$=$(\frac{1}{2-1}-\frac{1}{{2}^{2}-1})$+$(\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1})$+…+$(\frac{1}{{2}^{4}-1}-\frac{1}{{2}^{5}-1})$=1-$\frac{1}{{2}^{5}-1}$=$\frac{30}{31}$.
故答案為:$\frac{30}{31}$.

點評 本題考查了等比數(shù)列的通項公式及其性質(zhì)、數(shù)列遞推關(guān)系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=lnx+$\frac{1}{2}$ax2-(a+1)x+1在x=1處取得極小值,則實數(shù)a的取值范圍是a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=cosx(cosx-3)+sinx(sinx-3).
(1)若x∈[2π,3π],求f(x)的單調(diào)遞增區(qū)間;
(2)若x∈($\frac{π}{2}$,$\frac{3π}{4}$)且f(x)=-1,求tan2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)(1+x+x2n=a0+a1x+a2x2+…a2nx2n
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a1+a3+…+a2n-1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+4cosθ}\\{y=1+4sinθ}\end{array}\right.$(θ為參數(shù)),直線l經(jīng)過定點P(3,4),傾斜角為$\frac{π}{6}$.
(Ⅰ)寫出直線l的參數(shù)方程和曲線C的標準方程.
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=xeax,g(x)=lnx+1
(Ⅰ)a=-1,f(x)與g(x)均在x0取到最大值,求x0及k的值;
(Ⅱ)a=k=1時,求證:f(x)≥g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.同時擲兩枚骰子,得到的點數(shù)和為6的概率是(  )
A.$\frac{5}{12}$B.$\frac{5}{36}$C.$\frac{1}{9}$D.$\frac{5}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)θ為第三象限角,若tanθ=1,則sinθ+cosθ=$-\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.四棱錐P-ABCD中,PA⊥底面ABCD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°.
(Ⅰ)在側(cè)棱PC上是否存在一點Q,使BQ∥平面PAD?證明你的結(jié)論;
(Ⅱ)求平面PAD與平面PBC所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案