10.已知函數(shù)f(x)=lnx+$\frac{1}{2}$ax2-(a+1)x+1在x=1處取得極小值,則實(shí)數(shù)a的取值范圍是a>1.

分析 求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的極值點(diǎn),根據(jù)函數(shù)在x=1處取得極小值,求出a的范圍即可.

解答 解:f(x)的定義域是(0,+∞),
∵f(x)=lnx+$\frac{1}{2}$ax2-(a+1)x+1,
∴f′(x)=$\frac{1}{x}$+ax-(a+1)=$\frac{(ax-1)(x-1)}{x}$,
令f′(x)=0,解得:x=$\frac{1}{a}$或x=1,
若f(x)在x=1處取得極小值,
則0<$\frac{1}{a}$<1,解得:a>1,
故答案為:a>1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是( 。
A.$\frac{|cos3x|}{x}$B.$\frac{1+cos2x}{2x}$
C.$\frac{(4{x}^{2}-{π}^{2})(4{x}^{2}-9{π}^{2})}{{x}^{5}}$D.$\frac{|sin2x|}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx,g(x)=ax2-bx(a,b為常數(shù)).
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a=$\frac{1}{2}$時(shí),設(shè)h(x)=f(x)+g(x),若函數(shù)h(x)在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知圓柱的底面直徑與高都等于球的直徑,若該球的表面積為48π,則圓柱的側(cè)面積為48π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)y=f(x),若存在零點(diǎn)x0,則函數(shù)y=f(x)可以寫成:f(x)=(x-x0)g(x).
例如:對(duì)于函數(shù)f(x)=x3-2x2+3,-1是它的一個(gè)零點(diǎn),則f(x)=(x+1)g(x)(這里g(x)=x2-3x+3).若函數(shù)f(x)=x3+(a-2)x2+(b-2a)x+c存在零點(diǎn)x=2.
(1)若f(0)=-2,且函數(shù)y=f(x)在區(qū)間[-2,2]上的最大值為0,求實(shí)數(shù)a的取值范圍;
(2)已知函數(shù)y=f(x)存在零點(diǎn)x1∈[-1,0],且|f(1)|≤1,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx+ax2-ax,其中a∈R.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上有且僅有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若對(duì)任意x∈[1,+∞),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y-2≥0}\end{array}\right.$,則z=3x+y的取值范圍是[2,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若多項(xiàng)式x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,則a10的值為-11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.若Sn=2an-n,則$\frac{2}{{a}_{1}{a}_{2}}$+$\frac{4}{a{{\;}_{2}a}_{3}}$+$\frac{8}{{a}_{3}{a}_{4}}$+$\frac{16}{{a}_{4}{a}_{5}}$=$\frac{30}{31}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案