5.已知對數(shù)函數(shù)f(x)過點(diǎn)(2,4),則f($\root{4}{2}$)的值為( 。
A.-1B.$\frac{1}{2}$C.$\frac{1}{4}$D.1

分析 設(shè)出對數(shù)函數(shù)的解析式,求解即可.

解答 解:設(shè)對數(shù)函數(shù)為:f(x)=logax,對數(shù)函數(shù)f(x)過點(diǎn)(2,4),
可得4=loga2,解得a=$\root{4}{2}$,
對數(shù)函數(shù)為:f(x)=log$\root{4}{2}$x,
f($\root{4}{2}$)=${log}_{\root{4}{2}}\root{4}{2}$=1.
故選:D.

點(diǎn)評 本題考查對數(shù)函數(shù)的解析式的求法,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年湖南益陽市高二9月月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

若按如圖的算法流程圖運(yùn)行后,輸出的結(jié)果是,則輸入的N的值為( )

A.5 B.6 C.7 D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知定義在R上的函數(shù)y=f(x)對任意的x都滿足f(x+1)=-f(x),當(dāng)-1≤x<0 時(shí),f(x)=x3,若函數(shù)g(x)=f(x)-loga|x|至少6個(gè)零點(diǎn),則a的取值范圍是(0,$\frac{1}{5}$]∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)是定義在R上的函數(shù),對任意的x,y∈R都有f(x+y)=f(x)+f(y),且f(-1)=2
(1)求f(0),f(-2)的值;
(2)證明:函數(shù)f(x)在R上是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.定義域?yàn)镽的函數(shù)f(x)滿足:對任意的m,n∈R有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),有0<f(x)<1,f(4)=$\frac{1}{16}$
(1)證明:f(x)>0在R上恒成立;
(2)證明:f(x)在R上是減函數(shù);
(3)若x>0時(shí),不等式4f(x)f(ax)>f(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)是定義在R上的奇函數(shù),f(2)=0,當(dāng)x>0時(shí),有$\frac{xf′(x)-f(x)}{{x}^{2}}$<0恒成立,則$\frac{f(x)}{x}>0$的解集為( 。
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點(diǎn)P的軌跡是( 。
A.雙曲線B.雙曲線左邊一支C.雙曲線右邊一支D.一條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=ex-2x-1的兩個(gè)零點(diǎn)為0,x1,則x1所在的區(qū)間是( 。
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.討論函數(shù)y=(ax-1)(x-2)(a∈R)的零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案