13.下列函數(shù)中,在(0,+∞)上為增函數(shù)的是(  )
A.y=-x2B.$y={(\frac{1}{π})^x}$C.$y={log_{\frac{1}{2}}}x$D.$y=\sqrt{x}$

分析 判斷基本函數(shù)的單調(diào)性,推出結(jié)果即可.

解答 解:y=-x2的開口向下,在(0,+∞)上為減函數(shù).
$y={(\frac{1}{π})}^{x}$在(0,+∞)上為減函數(shù),
$y=lo{g}_{\frac{1}{2}}x$在(0,+∞)上為減函數(shù),
$y=\sqrt{x}$在(0,+∞)上為增函數(shù).
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的判斷,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點(diǎn).
(Ⅰ)求證:平面BCE⊥平面CDE;
(Ⅱ)求平面BCE與平面ACD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.$sinA=\frac{1}{2}$”是“A=30°”的必要不充分條件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若平面向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角是( 。
A.$\frac{5}{12}$πB.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x2-1=0},用列舉法表示集合A=(  )
A.{1}B.{-1}C.(-1,1)D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\left\{\begin{array}{l}1-x,x≤0\\{log_2}x,x>0\end{array}$,且f(a)=2,則a=-1或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)A={三件產(chǎn)品全是正品},B={三件產(chǎn)品全是次品},C={三件產(chǎn)品不全是次品},則下列結(jié)論不正確的是(  )
A.A與B互斥且為對(duì)立事件B.B與C為對(duì)立事件
C.A與C存在著包含關(guān)系D.A與C不是互斥事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實(shí)數(shù)a>0且a≠1,設(shè)x=loga(a2+2),y=loga(a3+2),則x、y的大小關(guān)系是( 。
A.x>yB.x<yC.x=yD.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$-$\frac{{x}^{2016}}{2016}$在區(qū)間[-2,2]上的零點(diǎn)個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案