已知函數(shù),其中
(1)討論函數(shù)的單調(diào)性;
(2)若對于任意的,不等式在上恒成立,求b的取值范圍.
解: (1),當(dāng)a≤0時,顯然>0(x≠0),這時f(x)在(-∞,0),(0,+∞)內(nèi)是增函數(shù);當(dāng)a>0時,令=0,解得x=,
當(dāng)x變化時,,的變化情況如下表:
x |
(-∞,-) |
- |
(-,0) |
(0, ) |
|
(,+∞) |
|
+ |
0 |
- |
- |
0 |
+ |
|
極大值 |
極小值 |
所以在(-∞,-),(,+∞)內(nèi)是增函數(shù),在(-,0),(0, )內(nèi)是減函數(shù)
(2)由(2)知,在[,1]上的最大值為與f(1)中的較大者,對于任意的a∈[,2],不等式f(x)≤10在[,1]上恒成立,當(dāng)且僅當(dāng),即,對任意的a∈[,2]成立。從而得b≤,所以滿足條件的b的取值范圍是(-∞, ]
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分13分)已知函數(shù)(其中x≥1且x≠2).
(1)求函數(shù)的反函數(shù)
(2)設(shè),求函數(shù)最小值及相應(yīng)的x值;
(3)若不等式對于區(qū)間上的每一個x值都成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市薊縣高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),其中.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)有三個零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省哈爾濱市高二下期中考試文數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù),其中
(1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市高三上學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),其中.
(1)若對一切恒成立,求的取值范圍;
(2)在函數(shù)的圖像上取定兩點(diǎn),記直線 的斜率為,證明:存在,使成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省高一第二次段考數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)已知函數(shù),其中.
(1)求函數(shù)的定義域;
(2)判斷的奇偶性,并說明理由;
(3)若,求使成立的的集合。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com