13.直線x-y+1=0在x軸上的截距為-1,在y軸上的截距為1.

分析 令y=0直接求出x的值,就是直線在x軸上的截距,令x=0直接求出y的值,就是直線在y軸上的截距.

解答 解:直線x-y+1=0在x軸上的截距,就是y=0時(shí)y的值,x=-1;
直線x-2y+1=0在y軸上的截距,就是x=0時(shí)y的值,y=1.
故答案為:-1,1.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查直線在坐標(biāo)軸上的截距的求法,注意截距不是距離,可以是正可以是負(fù),可以為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知(sinα+1)(1+cosα)=0,求sinα+cosα,sinα•cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系中,α=-$\frac{2π}{3}$,β的終邊與α的終邊分別有如下關(guān)系時(shí),求β.
(1)若α,β的終邊關(guān)于x軸對(duì)稱;
(2)若α,β的終邊關(guān)于y軸對(duì)稱;
(3)若α,β的終邊關(guān)于原點(diǎn)對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=logax(a>0,且a≠1)滿足f(27)=3,則f-1(log92)的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在y軸上截距是-2,斜率為3的直線方程是3x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義在R上的函數(shù)y=f(x)對(duì)任意的x都滿足f(x+2)=f(x),當(dāng)-1≤x<1時(shí),f(x)=sin$\frac{π}{2}$x,若函數(shù)g(x)=f(x)-loga|x|至少6個(gè)零點(diǎn),則a的取值范圍是(  )
A.(0,$\frac{1}{5}$]∪(5,+∞)B.(0,$\frac{1}{5}$)∪[5,+∞)C.($\frac{1}{7}$,$\frac{1}{5}$]∪(5,7)D.($\frac{1}{7}$,$\frac{1}{5}$)∪[5,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合M={x|ax2+bx+c>0,x∈R},N={x|Ax2+Bx+C>0,x∈R}(其中a,b,c,A,B,C均為非0實(shí)數(shù)).試判斷“$\frac{a}{A}$=$\frac{B}$=$\frac{c}{C}$”是“M=N”的充分條件還是必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知 p:x<-1,q:x<-2,則p是q的( 。
A.充分但不必要條件B.必要但不充分條件
C.充分且必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若關(guān)于x的方程ax2+bx+c=0(a,b,c∈R且a≠0)有實(shí)根,且不等式(a-b)2+(b-c)2+(c-a)2≥ma2恒成立,則實(shí)數(shù)m的最大值為( 。
A.$\frac{9}{16}$B.$\frac{3}{4}$C.1D.$\frac{9}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案