11.已知三棱錐的外接球的表面積為25π,該三棱錐的三視圖如圖所示,三個(gè)視圖的外輪廓都是直角三角形,則其側(cè)視圖面積的最大值為3.

分析 由三棱錐的外接球的表面積為25π,可知外接圓半徑R=5,即主視圖的斜邊長(zhǎng)為5,可得高為3.設(shè)俯視圖三角形的邊長(zhǎng)為a,b,可得a2+b2=42,設(shè)側(cè)視圖的底邊為m,利用體積法,則有4m=ab,側(cè)視圖面積的最大值S=$\frac{1}{2}•$3m,利用基本不等式即可求解.

解答 解:三棱錐的外接球的表面積為25π,可知外接圓半徑R=5,
三個(gè)視圖的外輪廓都是直角三角形,可得主視圖的斜邊長(zhǎng)為5,底邊是4,則高為3.
設(shè)俯視圖三角形的邊長(zhǎng)為a,b,可得a2+b2=42,
設(shè)側(cè)視圖的底邊為m,利用體積法,則有4m=ab,
∵16=a2+b2≥2ab,解得:ab≤8,
又∵4m=ab,
∴m≤2
側(cè)視圖面積的S=$\frac{1}{2}$•3m≤3.
故答案為3.

點(diǎn)評(píng) 本題主要考查了三棱錐邊長(zhǎng)與外接圓的關(guān)系的建立和三視圖的認(rèn)識(shí)和理解,利用條件建立不等式關(guān)系是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)Sn為各項(xiàng)不相等的等差數(shù)列an的前n 項(xiàng)和,已知a3a8=3a11,S3=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n 項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.大數(shù)據(jù)時(shí)代出現(xiàn)了滴滴打車(chē)服務(wù),二胎政策的放開(kāi)使得家庭中有兩個(gè)小孩的現(xiàn)象普遍存在,某城市關(guān)系要好的A,B,C,D四個(gè)家庭各有兩個(gè)小孩共8人,準(zhǔn)備使用滴滴打車(chē)軟件,分乘甲、乙兩輛汽車(chē)出去游玩,每車(chē)限坐4名(乘同一輛車(chē)的4名小孩不考慮位置),其中A戶家庭的孿生姐妹需乘同一輛車(chē),則乘坐甲車(chē)的4名小孩恰有2名來(lái)自于同一個(gè)家庭的乘坐方式共有(  )
A.18種B.24種C.36種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)F(x)=xf(x),f(x)滿足f(x)=f(-x),且當(dāng)x∈(-∞,0]時(shí),F(xiàn)'(x)<0成立,若$a={2^{0.1}}•f({{2^{0.1}}}),b=ln2•f({ln2}),c={log_2}\frac{1}{8}•f({{{log}_2}\frac{1}{8}})$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>a>bC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若集合A={x|log4x≤$\frac{1}{2}$},B={x|(x+3)( x-1)≥0},則A∩(∁RB)=( 。
A.(0,1]B.(0,1)C.[1,2]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=|x-1|+|x-a|.
(1)若a=-1,解不等式f(x)≥3;
(2)如果?x∈R,使得f(x)<2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知角θ的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線$y=-\sqrt{3}x$上,則sin2θ=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知全集U=R,M={x|y=lg(1-$\frac{2}{x}$)},N={x|y=$\sqrt{x-1}$},則N∩(∁UM)=( 。
A.B.[1,2]C.[0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-x,x≤0}\\{(\frac{1}{2})^{x},x>0}\end{array}\right.$,若a=f(log3$\frac{1}{2}$),b=f(2${\;}^{-\frac{1}{2}}$),c=f(3${\;}^{\frac{1}{2}}$),則( 。
A.c>b>aB.c>a>bC.a>c>bD.a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案