19.在(1-2x)4的展開式中含x3項的系數(shù)為-32.

分析 寫出二項展開式的通項,由x的指數(shù)為3得到r值,則答案可求.

解答 解:由${T}_{r+1}={C}_{4}^{r}(-2x)^{r}$=$(-2)^{r}{C}_{4}^{r}{x}^{r}$,
令r=3,得${T}_{4}=-32{x}^{3}$.
∴在(1-2x)4的展開式中含x3項的系數(shù)為-32.
故答案為:-32

點評 本題考查二項式系數(shù)的性質,熟記二項展開式的通項是關鍵,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.棱長為a的正四面體的四個頂點都在同一個球面上,若過該球球心的一個截面如圖所示,并且圖中三角形(正四面體的截面)的面積是3$\sqrt{2}$,則a等于( 。
A.2$\sqrt{2}$B.$\sqrt{2}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.某幾何體的三視圖如圖,則該幾何體的外接球表面積20π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{2}$x2+alnx
(1)若a=-1,求函數(shù)f(x)的極值,并指出極大值還是極小值;
(2)若a=1,求函數(shù)f(x)在[1,e]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知圓O:x2+y2=2,圓M:(x-a)2+(y-a+4)2=1.若圓M上存在點P,過點P作圓O的兩條切線,切點為A、B,使得四邊形PAOB為正方形,則實數(shù)a的取值范圍為[$2-\frac{\sqrt{2}}{2},2+\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.復數(shù)z=$\frac{-3+i}{2+i}$的共軛復數(shù)為$\overline{z}$,則$\overline{z}$的虛部為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=ex(alnx+$\frac{2}{x}$+b),其中a,b∈R,e≈2.71828自然對數(shù)的底數(shù).
(1)若曲線y=f(x)在x=1的切線方程為y=e(x-1),求實數(shù)a,b的值;
(2)①若a=-2時,函數(shù)y=f(x)既有極大值,又有極小值,求實數(shù)b的取值范圍;
②若a=2,b≥-2,若f(x)≥kx對一切正實數(shù)x恒成立,求實數(shù)k的最大值(用b表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知正項數(shù)列{an}的奇數(shù)項a1,a3,a5,…a2k-1…構成首項a1=1等差數(shù)列,偶數(shù)項構成公比q=2的等比數(shù)列,且a1,a2,a3成等比數(shù)列,a4,a5,a7成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=$\frac{{a}_{2n+1}}{{a}_{2n}}$,Tn=b1.b2…bn,求正整數(shù)k,使得對任意n∈N*,均有Tk≥Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.集合M滿足:{x|1≤x≤3,x∈N}?M?{y|0≤y2<16,y∈N*},滿足條件的集合M的個數(shù)為( 。
A.7B.1C.2D.0

查看答案和解析>>

同步練習冊答案