分析 由題意畫出圖形,利用兩點間的距離關系求出OP的距離,再由題意得到關于a的不等式求得答案.
解答 解:如圖,圓O的半徑為$\sqrt{2}$,圓M上存在點P,過點P作圓O的兩條切線,切點為A,B,使得四邊形PAOB為正方形,
則∠APO=45°,在Rt△PAO中,PO=2,
又圓M的半徑等于1,圓心坐標M(a,a-4),
∴|PO|min=|MO|-1,|PO|max=|MO|+1,
∵|MO|=$\sqrt{{a}^{2}+(a-4)^{2}}$,
∴由$\sqrt{{a}^{2}+(a-4)^{2}}$-1≤2≤$\sqrt{{a}^{2}+(a-4)^{2}}$+1,
解得:2-$\frac{\sqrt{2}}{2}$≤a≤2+$\frac{\sqrt{2}}{2}$.
故答案為:[$2-\frac{\sqrt{2}}{2},2+\frac{\sqrt{2}}{2}$].
點評 本題主要考查直線和圓的位置關系的應用,利用數(shù)形結合將條件進行等價轉化是解決本題的關鍵,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=2-x | B. | y=2x | C. | y=x${\;}^{-\frac{1}{2}}$ | D. | y=x${\;}^{\frac{1}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若{an}是等差數(shù)列,且首項a1=0,則{an}是“和有界數(shù)列” | |
B. | 若{an}是等差數(shù)列,且公差d=0,則{an}是“和有界數(shù)列” | |
C. | 若{an}是等比數(shù)列,且公比|q|<1,則{an}是“和有界數(shù)列” | |
D. | 若{an}是等比數(shù)列,且{an}是“和有界數(shù)列”,則{an}的公比|q|<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{x^2}{64}$-$\frac{y^2}{39}$=1 | B. | $\frac{y^2}{16}$-$\frac{x^2}{9}$=1 | C. | $\frac{x^2}{16}$-$\frac{y^2}{9}$=1 | D. | $\frac{y^2}{16}$-$\frac{x^2}{25}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com