【題目】已知函數(shù).
(1)設(shè).
①求方程=2的根;
②若對(duì)任意,不等式恒成立,求實(shí)數(shù)m的最大值;
(2)若,函數(shù)有且只有1個(gè)零點(diǎn),求ab的值.
【答案】(1)①0 ②4 (2)1
【解析】
(1)①根據(jù)指數(shù)間倒數(shù)關(guān)系轉(zhuǎn)化為一元二次方程,求方程根;②根據(jù)指數(shù)間平方關(guān)系,將不等式轉(zhuǎn)化為一元不等式,再利用變量分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值,最后根據(jù)基本不等式求最值;(2)根據(jù)導(dǎo)函數(shù)零點(diǎn)情況,確定函數(shù)單調(diào)變化趨勢(shì),結(jié)合圖象確定唯一零點(diǎn)必在極值點(diǎn)取得,從而建立等量關(guān)系,求出ab的值.
(1)因?yàn)?/span>,所以.
①方程,即,亦即,
所以,于是,解得.
②由條件知.
因?yàn)?/span>對(duì)于恒成立,且,
所以對(duì)于恒成立.
而,且,
所以,故實(shí)數(shù)的最大值為4.
(2)因?yàn)楹瘮?shù)只有1個(gè)零點(diǎn),而,
所以0是函數(shù)的唯一零點(diǎn).
因?yàn)?/span>,又由知,
所以有唯一解.
令,則,
從而對(duì)任意,,所以是上的單調(diào)增函數(shù),
于是當(dāng),;當(dāng)時(shí),.
因而函數(shù)在上是單調(diào)減函數(shù),在上是單調(diào)增函數(shù).
下證.
若,則,于是,
又,且函數(shù)在以和為端點(diǎn)的閉區(qū)間上的圖象不間斷,所以在和之間存在的零點(diǎn),記為. 因?yàn)?/span>,所以,又,所以與“0是函數(shù)的唯一零點(diǎn)”矛盾.
若,同理可得,在和之間存在的非0的零點(diǎn),矛盾.
因此,.
于是,故,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長(zhǎng),“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線(xiàn)之間的距離,用現(xiàn)代語(yǔ)言描述:在羨除中,,,,,兩條平行線(xiàn)與間的距離為h,直線(xiàn)到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等比數(shù)列{an}中,an>0 (n∈N ),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3與a5的等比中項(xiàng)為2.
(1) 求數(shù)列{an}的通項(xiàng)公式;
(2) 設(shè),數(shù)列{bn}的前n項(xiàng)和為Sn,當(dāng)最大時(shí),求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(1)求在處的切線(xiàn)方程;
(2)若,證明在上單調(diào)遞增;
(3)設(shè)對(duì)任意,成立求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種水箱用的“浮球”是由兩個(gè)相同半球和一個(gè)圓柱筒組成,它的軸截面如圖所示,已知半球的直徑是,圓柱筒高,為增強(qiáng)該“浮球”的牢固性,給“浮球”內(nèi)置一“雙蝶形”防壓卡,防壓卡由金屬材料桿,,,,,及焊接而成,其中,分別是圓柱上下底面的圓心,,,,均在“浮球”的內(nèi)壁上,AC,BD通過(guò)“浮球”中心,且、均與圓柱的底面垂直.
(1)設(shè)與圓柱底面所成的角為,試用表示出防壓卡中四邊形的面積,并寫(xiě)出的取值范圍;
(2)研究表明,四邊形的面積越大,“浮球”防壓性越強(qiáng),求四邊形面積取最大值時(shí),點(diǎn)到圓柱上底面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高鐵、網(wǎng)購(gòu)、移動(dòng)支付和共享單車(chē)被譽(yù)為中國(guó)的“新四大發(fā)明”,彰顯出中國(guó)式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶(hù)中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動(dòng)支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計(jì) | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移動(dòng)支付超過(guò)3次的用戶(hù)稱(chēng)為“移動(dòng)支付活躍用戶(hù)”,能否在犯錯(cuò)誤概率不超過(guò)0.005的前提下,認(rèn)為是否為“移動(dòng)支付活躍用戶(hù)”與性別有關(guān)?
(Ⅱ)把每周使用移動(dòng)支付6次及6次以上的用戶(hù)稱(chēng)為“移動(dòng)支付達(dá)人”,視頻率為概率,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取4名用戶(hù).
①求抽取的4名用戶(hù)中,既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率;
②為了鼓勵(lì)男性用戶(hù)使用移動(dòng)支付,對(duì)抽出的男“移動(dòng)支付達(dá)人”每人獎(jiǎng)勵(lì)300元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點(diǎn).
證明:;
設(shè),點(diǎn)M在線(xiàn)段PC上且異面直線(xiàn)BM與CE所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),下述四個(gè)結(jié)論:
①是偶函數(shù);
②的最小正周期為;
③的最小值為0;
④在上有3個(gè)零點(diǎn)
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com