16.自點A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,反射光線所在的直線與圓C:x2+y2-4x-4y+7=0相切,求光線l和反射光線所在的直線方程.

分析 化簡圓的方程為標準方程,求出關(guān)于x軸對稱的圓的方程,設(shè)l的斜率為k,利用相切求出k的值即可得到光線l和反射光線所在的直線方程.

解答 解:根據(jù)對稱關(guān)系,首先求出點A的對稱點A′的坐標為(-3,-3),其次設(shè)過A′的圓C的切線方程為y=k(x+3)-3
根據(jù)d=$\frac{|5k-5|}{\sqrt{{k}^{2}+1}}$=1,即求出圓C的切線的斜率為k=$\frac{4}{3}$或k=$\frac{3}{4}$
進一步求出反射光線所在的直線的方程為4x-3y+3=0或3x-4y-3=0
最后根據(jù)入射光與反射光線關(guān)于x軸對稱,求出入射光線所在直線方程為4x+3y+3=0或3x+4y-3=0.

點評 本題考查點、直線和圓的對稱問題,直線與圓的關(guān)系,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.冪函數(shù)f(x)=(t3-t+1)x${\;}^{\frac{7+3t-2{t}^{2}}{5}}$是偶函數(shù),且在(0,+∞)上為增函數(shù),求函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2asinωxcosωx+2$\sqrt{3}$cos2ωx-$\sqrt{3}$(a>0,ω>0)的最大值為2,x1,x2是集合M={x∈R|f(x)=0}中的任意兩個元素,且|x1-x2|的最小值為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式及其對稱軸;   
(2)求f(x)在區(qū)間(0,$\frac{π}{8}$]的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,角A,B,C的對邊分別為a,b,c,且b2-a2=ac,則(  )
A.B=2CB.B=2AC.A=2CD.C=2A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)全集U={1,2,3,4},M={1,3,4},N={2,4},P={2},那么下列關(guān)系正確的是( 。
A.P=(∁UM)∩NB.P=M∪NC.P=M∩(∁UN)D.P=M∩N

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知f(x)=ax+b-1,若a,b都是從區(qū)間[0,2]任取的一個數(shù),則f(1)<0成立的概率為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.分解因式:x2-xy+3y-3x=(x-y)(x-3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)集合M={x|x≤$\sqrt{17}$},a=4$\sqrt{2}$,則( 。
A.a∈MB.a∉MC.a⊆MD.a>M

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)g(x)=f(x)+3x(x∈R)為奇函數(shù).
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ)若x>0時,f(x)=log3x,求函數(shù)g(x)的解析式.

查看答案和解析>>

同步練習冊答案