為了研究重量x(單位:克)對彈簧長度y(單位:厘米)的影響,李華對不同重量的6根彈簧進(jìn)行了四次相關(guān)性試驗,并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m,如下表:
第一次第二次第三次第四次
r0.920.880.790.95
m117122134114
則體現(xiàn)了重量與彈簧長度有更強(qiáng)的線性相關(guān)性的試驗是( 。
A、第一次B、第二次
C、第三次D、第四次
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:在驗證兩個變量之間的線性相關(guān)關(guān)系中,相關(guān)系數(shù)的絕對值越接近于1,相關(guān)性越強(qiáng),殘差平方和越小,相關(guān)性越強(qiáng),得到結(jié)果.
解答: 解:相關(guān)系數(shù)越大、殘差平方和越小,兩變量的相關(guān)性越強(qiáng).
故選:D
點評:本題考查兩個變量的線性相關(guān),本題解題的關(guān)鍵是了解相關(guān)系數(shù)和殘差平方和兩個量對于線性相關(guān)的刻畫.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=x2+1,x∈[
1
2
,2]},集合B={x|m-1≤x≤m+1},命題p:x∈A,命題q:x∈B,若命題p是命題q的必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(2,1),且傾斜角為135°的直線方程為( 。
A、x+y-3=0
B、x-y-1=0
C、2x-y-3=0
D、x-2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
i2+i3+i4
1-i
,則z的共軛復(fù)數(shù)
.
z
在復(fù)平面內(nèi)對應(yīng)的點( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=ax2+bx(a,b為非零實數(shù))存在一個虛數(shù)x1,使f(x)為實數(shù)-c,則b2-4ac與(2ax1+b)2的關(guān)系為( 。
A、不能比較大小
B、b2-4ac>(2ax1+b)2
C、b2-4ac<(2ax1+b)2
D、b2-4ac=(2ax1+b)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)(3+4i)+(-5-3i);
(2)(4-3i)(-5-4i);
(3)
1+i
1+3i
;                  
(4)
1-2i
2i
-
2i-3
1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1至20共20個整數(shù)中取兩個數(shù)相加,使其和為偶數(shù)的不同取法共有
 
種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若有窮數(shù)列a1,a2,a3,…,am(m是正整數(shù))滿足條件:ai=am-i+1(i=1,2,3,…,m),則稱其為“對稱數(shù)列”.例如,1,2,3,2,1和1,2,3,3,2,1都是“對稱數(shù)列”.
(Ⅰ)若{bn}是25項的“對稱數(shù)列”,且b13,b14,b15,…,b25是首項為1,公比為2的等比數(shù)列.求{bn}的所有項和S;
(Ⅱ)若{cn}是50項的“對稱數(shù)列”,且c26,c27,c28,…,c50是首項為1,公差為2的等差數(shù)列.求{cn}的前n項和Sn,1≤n≤50,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x||x-1|<1},函數(shù)y=
x-1
的定義域為Q,則集合Q∩P=( 。
A、{x|0<x≤1}
B、{x|0<x<2}
C、{x|1<x≤2}
D、{x|1<x<2}

查看答案和解析>>

同步練習(xí)冊答案