20.古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:

他們研究過圖中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù),由以上規(guī)律,則這些三角形數(shù)從小到大形成一個(gè)數(shù)列{an},那么a10的值為( 。
A.45B.55C.65D.66

分析 根據(jù)已知中第1個(gè)圖中黑點(diǎn)有1個(gè),第2個(gè)圖中黑點(diǎn)有1+2個(gè),第3個(gè)圖中黑點(diǎn)有1+2+3個(gè),第4個(gè)圖中黑點(diǎn)有1+2+3+4個(gè),…歸納可得第n個(gè)圖中黑點(diǎn)有1+2+3+…+n個(gè),可得結(jié)論.

解答 解:由已知中:
第1個(gè)圖中黑點(diǎn)有1個(gè),
第2個(gè)圖中黑點(diǎn)有3=1+2個(gè),
第3個(gè)圖中黑點(diǎn)有6=1+2+3個(gè),
第4個(gè)圖中黑點(diǎn)有10=1+2+3+4個(gè),

故第10個(gè)圖中黑點(diǎn)有a10=1+2+3+…+10=$\frac{10×11}{2}$=55個(gè),
故選B.

點(diǎn)評(píng) 歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題p:?x<0,x2≥2x,則命題¬p為( 。
A.?x0<0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$B.?x0≥0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$
C.?x0<0,x${\;}_{0}^{2}$<2${\;}^{{x}_{0}}$D.?x0≥0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=($\frac{1}{2}$)x-x2的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.《九章算術(shù)》第三章“衰分”介紹比例分配問題:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(百分比)為“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6個(gè)單位,遞減的比例為40%,今共有糧m(m>0)石,按甲、乙、丙、丁的順序進(jìn)行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和為164石,則“衰分比”與m的值分別為(  )
A.20%  369B.80%  369C.40%  360D.60%  365

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知曲線f(x)=aex-x+b在x=1處的切線方程為y=(e-1)x-1
(Ⅰ)求f(x)的極值;
(Ⅱ)證明:x>0時(shí),$\frac{x}{f(x-1)+x}$<exlnx+2(e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平行四邊形ABCD中,AD=1,∠BAD=30°,E為CD的中點(diǎn).若$\overrightarrow{AC}•\overrightarrow{BE}=1$,則AB的長(zhǎng)為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)存在實(shí)數(shù)x,使不等式f(x)+|x+2|-m≤0有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-ax2,g(x)=f(x)+ax2-x.
(1)求函數(shù)f(x)的極值;
(2)設(shè)x1>x2>0,比較$\frac{{x}_{1}}{{x}_{1}^{2}+{x}_{2}^{2}}$-$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$與1的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓臺(tái)的上下底面半徑分別是2、4,且側(cè)面面積等于兩底面面積之和,求該圓臺(tái)的母線長(zhǎng)和體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案