已知圓C過點A(a,b),圓心C(c,0),且a2b2+a2+c2-4a-8ab-2c+21=0,則圓C的標準方程為
 
考點:圓的標準方程
專題:計算題,直線與圓
分析:利用配方法,可得(ab-4)2+(a-2)2+(c-1)2=0,從而可得圓C過點A(2,2),圓心C(1,0),即可求出圓C的標準方程.
解答: 解:∵a2b2+a2+c2-4a-8ab-2c+21=0,
∴(ab-4)2+(a-2)2+(c-1)2=0,
∴a=b=2,c=1,
∴圓C過點A(2,2),圓心C(1,0),
∴r=
5
,
∴圓C的標準方程為(x-1)2+y2=5.
故答案為:(x-1)2+y2=5.
點評:本題考查圓C的標準方程,考查學生的計算能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

和式
10
i=1
(xi-5)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

寫出滿足下列條件的直線的方程:斜率是
3
3
,經(jīng)過點A(8,-2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若三角形的三個內(nèi)角的度數(shù)成等差數(shù)列,則中間的角是
 
度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x∈(0,
π
2
)時,函數(shù)f(x)=tx-sinx(t∈R)的值恒小于0,則t的取值范圍是(  )
A、t≤
2
π
B、t≤
π
2
C、t≥
2
π
D、t<
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,延長CD至E,使得DE=CD,若動點P從點A出發(fā),沿正方形的邊按如下路線運動:A→B→C→D→E→A→D,其中
AP
AB
AE
,則下列判斷中:
①當P為BC的中點時λ+μ=2;  
②滿足λ+μ=1的點P恰有三個;
③λ+μ的最大值為3;  
④若滿足λ+μ=k的點P有且只有兩個,則k∈(1,3).
正確判斷的序號是
 
.(請寫出所有正確判斷的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線x2=ky與曲線y=lnx的公共切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線S的頂點在原點,焦點在x軸上,△ABC三個頂點都在拋物線上,且△ABC的重心為拋物線的焦點,若BC所在直線方程為l:4x+y-20=0.
(1)求拋物線S的方程;
(2)若M(m,3)在拋物線S的準線上,過點M的直線與拋物線在第一象限的切點為N,記F為拋物線S的焦點,求直線NF的斜率.
(注:△ABC重心:G(
xA+xB+xC
3
,
yA+yB+yC
3
))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,PA=PD=AD=2,點M在線段PC上,且PM=2MC,N為AD的中點
(Ⅰ)求證:BC⊥平面PNB;
(Ⅱ)若平面PAD⊥平面ABCD,求三棱錐P-NBM的體積.

查看答案和解析>>

同步練習冊答案