8.已知集合A={x|x2-4x+3<0},B={y|y=x2,x∈R},則A∩B=( 。
A.B.[0,1)∪(3,+∞)C.AD.B

分析 求出A中不等式的解集確定出A,求出B中y的范圍確定出B,找出兩集合的交集即可.

解答 解:由A中不等式變形得:(x-1)(x-3)<0,
解得:1<x<3,即A=(1,3),
由B中y=x2≥0,得到B=[0,+∞),
則A∩B=(1,3)=A,
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.當今人口政策受到人們的廣泛關注,如表是某大學人口預測課題組通過研究預測的15~64歲人口所占比例的結果:
年份20302035204020452050
年份代號t12345
所占比例y(%)6865626261
已知所占比例y關于年份代號t的線性回歸方程為$\widehaty$=-1.7t+m,則m=( 。
A.67.8B.68C.68.5D.68.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.將函數(shù)y=3sin2x的圖象向右平移$\frac{π}{6}$個單位后所得圖象的函數(shù)解析式是y=$y=3sin(2x-\frac{π}{3})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)y=f(x)的圖象在點P(5,f(5))處的切線方程是y=-2x+8,則f(5)+f′(5)等于( 。
A.4B.2C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.化簡$\frac{cos40°}{cos25°\sqrt{1-sin40°}}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知復數(shù)z滿足(z-1)•i=1+i,則$\overline z$=( 。
A.2-iB.2+iC.-2-iD.-2+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知拋物線y=x2在點A(1,1)處的切線為l.
(1)求切線l的方程;
(2)若切線l經(jīng)過橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個焦點和頂點,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.命題“若x2+x-6>0,則x>2或x<-3”的否命題為“若x2+x-6≤0,則-3≤x≤2”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知a>0,x,y滿足約束條件$\left\{{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-2)}\end{array}}\right.$,若z=2x+y的最大值為$\frac{11}{2}$,則a=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步練習冊答案