已知橢圓中心在原點(diǎn)一個(gè)焦點(diǎn)為F1(0.-2
2
)橢圓上的點(diǎn)到點(diǎn)F1的最短距離3-2
2

(1)求橢圓的方程;
(2)是否存在直線l,使l與橢圓交于A、B,且線段AB恰好被直線x=-
1
2
平分,若存在,求出直線l的傾斜角α的取值范圍;若不存在請說明理由.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由焦點(diǎn)坐標(biāo)可得c,再由橢圓上的點(diǎn)到點(diǎn)F1的最短距離為a-c,求出a,再由a,b,c的關(guān)系,解得b,進(jìn)而得到橢圓方程;
(2)假設(shè)存在直線l,設(shè)出方程與橢圓方程聯(lián)立,利用韋達(dá)定理,結(jié)合根的判別式,即可得到結(jié)論.
解答: 解:(1)橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為F1(0.-2
2
),則c=2
2

橢圓上的點(diǎn)到點(diǎn)F1的最短距離3-2
2
,即有a-c=3-2
2
,則有a=3,
b2=a2-c2=1,
故橢圓方程為:
y2
9
+x2=1
;
(2)假設(shè)存在直線l,依題意l交橢圓所得弦AB被x=-
1
2
平分,
∴直線l的斜率存在.
設(shè)直線l:y=kx+m,則
y=kx+m
x2+
y2
9
=1
,消去y,整理得(k2+9)x2+2kmx+m2-9=0,
∵l與橢圓交于不同的兩點(diǎn)A,B,
∴△=4k2m2-4(k2+9)(m2-9)>0,即m2-k2-9<0①
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-
2km
9+k2
,
x1+x2
2
=-
km
9+k2
=-
1
2
,∴m=
k2+9
2k

把②代入①式中得
(k2+9)2
4k2
-(k2+9)<0,
∴k>
3
或k<-
3

∴則存在直線l,且直線l傾斜角α∈(
π
3
π
2
)∪(
π
2
,
3
).
點(diǎn)評:本題考查橢圓的方程和性質(zhì),考查直線與橢圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S20>0,S21<0,則
S1
a1
S2
a2
,…,
S21
a21
中最大的項(xiàng)為( 。
A、
S8
a8
B、
S9
a9
C、
S10
a10
D、
S11
a11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2sinx,2sinx),
b
=(cosx,-sinx),求函數(shù)f(x)=
a
b
+1.
(1)如果f(x)=
1
2
,求sin4x的值.
(2)如果x∈(0,
π
2
),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,直線x=
a2
c
與雙曲線的兩條漸近線分別交于A、B兩點(diǎn)(A在B的上方),P是C上任意一點(diǎn),
OP
OA
OB
(λ、μ∈R),則λμ=( 。
A、
1
2
B、1
C、2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè) 函數(shù)f(x)=ax2+bx+1(a≠0,b∈R),若f(-1)=0,且對任意實(shí)數(shù)x(x∈R)不等式f(x)≥0恒成立.
(1)求實(shí)數(shù)a、b的值;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=mx2的焦點(diǎn)與橢圓
y2
6
+
x2
2
=1的上焦點(diǎn)重合,則m=( 。
A、
1
8
B、
1
4
C、8
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x),設(shè)其導(dǎo)函數(shù)為f′(x),當(dāng)x∈(-∞,0]時(shí),恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-1)的實(shí)數(shù)x的取值范圍是(  )
A、(
1
2
,2)
B、(-2,1)
C、(-1,2)
D、(-1,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P(sin
π
6
,-cos
π
6
)在∠α的終邊上,且-2π<α<0,則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
9
+
y2
8
=1的左、右兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,過F1作一直線交橢圓C于A,B兩點(diǎn).求△ABF2面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案