Loading [MathJax]/jax/output/CommonHTML/jax.js
16.已知函數(shù)f(x)=xlnx,g(x)=xex
(Ⅰ)記F(x)=f(x)-g(x),判斷F(x)在區(qū)間(1,2)內(nèi)零點(diǎn)個(gè)數(shù)并說(shuō)明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內(nèi)的零點(diǎn)為x0,m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個(gè)不等實(shí)根x1,x2(x1<x2),判斷x1+x2與2x0的大小,并給出對(duì)應(yīng)的證明.

分析 (Ⅰ)對(duì)F(x)求導(dǎo),利用x∈(1,2)判定導(dǎo)函數(shù)的符號(hào),進(jìn)而得到函數(shù)的單調(diào)性,在利用零點(diǎn)存在定理進(jìn)行證明.
(Ⅱ)先由x的范圍討論f(x),g(x)的大小,確定之間的關(guān)系式m(x),在判斷x1+x2與2x0的大小,可以利用分析法對(duì)其進(jìn)行證明.

解答 解:由題意:F(x)=f(x)-g(x),那么:F(x)=xlnx-xex.定義域?yàn)椋?,+∞)
F′(x)=1+lnx+x1ex,由題設(shè)x∈(1,2),故F′(x)>0,即F(x)在區(qū)間(1,2)上是增函數(shù).(1,2)是單調(diào)增區(qū)間.那么:F(1)=ln1-1e=1e<0,F(xiàn)(2)=2ln2-2e2>0,并且F(x)在(1,2)上連續(xù)的,故根據(jù)零點(diǎn)定理,有F(x)在區(qū)間(1,2)有且僅有唯一實(shí)根,即一個(gè)零點(diǎn).
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內(nèi)的零點(diǎn)為x0,由f(x)=xlnx,當(dāng)0<x≤1時(shí),f(x)≤0,而g(x)=xex>0,故f(x)<g(x);
由(Ⅰ)可知F′(x)=1+lnx+x1ex,當(dāng)x>1時(shí),F(xiàn)′(x)>0,存在零點(diǎn)x0∈(1,2),不然有:F(x0)=f(x0)-g(x0)=0,故1<x<x0時(shí),f(x)<g(x);當(dāng)x>x0時(shí),f(x)>g(x);
而此得到m(x)={xlnx0xx0xexxx0,
顯然:當(dāng)1<x<x0時(shí),m′(x)=1+lnx恒大于0,m(x)是單增函數(shù).
當(dāng)x>x0時(shí),m′(x)=x1ex恒小于0,m(x)是單減函數(shù).
m(x)=n(n∈R)在(1,+∞)有兩個(gè)不等實(shí)根x1,x2(x1<x2),則x1∈(1,x0),x2∈(x0,+∞),
顯然:當(dāng)x2→+∞時(shí),x1+x2>2x0
要證明x1+x2>2x0,即可證明x2>2x0-x1>x0,而m(x)在x>x0時(shí)是單減函數(shù).故證m(x2)<m(2x0-x1).
又由m(x1)=m(x2),即可證:m(x1)<m(2x0-x1).即x1lnx12x0x1e2x0x1,(構(gòu)造思想)
令h(x)=xlnx-2x0xe2x0x,由(1<x<x0).其中h(x0)=0,
那么:h′(x)=1+lnx+1e2x0x-2x0xe2x0x,
記φ(t)=tet,則φ′(t)=1tet,當(dāng)t∈(0,1)時(shí),φ′(t)>0;當(dāng)t>1時(shí),φ′(t)<0;故φ(t)max=1e;
而φ(t)>0;故1e>φ(t)>0,而2x0-x>0,從而有:1e2x0xe2x0x<0;
因此:h′(x)=1+lnx+1e2x0x-2x0xe2x0x>0,即h(x)單增,從而1<x<x0時(shí),h(x)<h(x0)=0.
即x1lnx12x0x1e2x0x1成立.
故得:x1+x2>2x0

點(diǎn)評(píng) 本題考查了零點(diǎn)才存在性問(wèn)題和判斷,有考查了利用導(dǎo)數(shù)來(lái)研究函數(shù)的單調(diào)性,最值及其運(yùn)用.考了證明化簡(jiǎn)的能力,不斷的構(gòu)造思想.屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.解下列各題:
(1)求下列橢圓5x2+9y2=100的焦點(diǎn)和頂點(diǎn)的坐標(biāo);
(2)求拋物線 y2-6x=0的焦點(diǎn)坐標(biāo),準(zhǔn)線方程和對(duì)稱(chēng)軸;
(3)求焦點(diǎn)在x軸上,兩頂點(diǎn)間的距離是8,e=54的 雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=13x3+(1-a)x2-4ax+a,其中a為常數(shù).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[0,3]上的最大值為3,求實(shí)數(shù)a的取值集合;
(3)試討論函數(shù)y=f′(x)的圖象與函數(shù)y=1x-(a+1)2的圖象的公切線條數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=(x-a)2lnx,a∈R
(1)證明:函數(shù)f(x)=(x-a)2lnx,a∈R的圖象恒經(jīng)過(guò)一個(gè)定點(diǎn);
(2)若函數(shù)h(x)=xxaf′(x)在(0,+∞)有定義,且不等式h(x)≤0在(0,+∞)上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)=x+2x6
(1)若f(a)=2,求a及f(3)的值;
(2)求g(x)=f(x+6)的解析式;
(3)判斷g(x)在[1,4]上的單調(diào)性并求出其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=lnx-ax
(1)若f(x)在區(qū)間[1,e2]上有最小值2,求a的值(e≈2.718);
(2)在(1)的條件下,?x1x2∈[1,e2]都有|f(x1)-f(x2)|<et-2,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=lnx.
(1)求g(x)=f(x)-(x-1)的最大值;
(2)若?x>0,f(x)<ax≤x2+1成立,求a的取值范圍;
(3)若m>n>0,試比較fmfnmn2nm2+n2的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=1ex+ax(x>0,a∈R),若存在實(shí)數(shù)m,n,使得f(x)≥0的解集恰好為[m,n],則實(shí)數(shù)a的取值范圍為(-1e,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)f(n)=logn+1(n+2)(n∈N+),現(xiàn)把滿足乘積f(1)f(2)…f(n)為整數(shù)的n叫做“賀數(shù)”,則在區(qū)間(1,2015)內(nèi)所有“賀數(shù)”的個(gè)數(shù)是( �。�
A.9B.10C.29D.210

查看答案和解析>>

同步練習(xí)冊(cè)答案